Impact of the extreme 2015-2016 enos event on the geometry of the earth surface in the equatorial region of south America

Authors

  • Romina Galván Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Consejo Nacional de Investigaciones Científicas y Técnicas.
  • Micaela Carbonetti Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Consejo Nacional de Investigaciones Científicas y Técnicas
  • Mauricio Gende Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Consejo Nacional de Investigaciones Científicas y Técnicas
  • Claudio Brunini Consejo Nacional de Investigaciones Científicas y Técnicas, Observatorio Geodésico Alemán Argentino (AGGO)

Keywords:

Geodesy, GNSS, El Niño-Southern Oscillation, South America

Abstract

El Niño-Southern Oscillation (ENSO) is an atmospheric-oceanic phenomenon that originates in the equatorial Pacific Ocean. It is characterized by two phases: the warm or “El Niño” phase, and the cold or “La Niña” phase. They respectively refer to a significant increase or decrease of the surface temperature of the Pacific Ocean with respect to normal values.One of the main consequences of this abnormality is an alteration of the hydrological cycle in the rainfall patterns in South American and Caribbean region. Such disturbance can cause non-periodic variations in both the rainfall patterns and water body storages located on the surface or near it. The immediate consequence is the pressure that such bodies exert on the earth's crust change. They can cause geometric movements of the earth's crust and gravity measurement changes.This paper is focused on the geometric effects of this phenomenon on the GNSS station positions of SIRGAS-CON network. Time periods for whichEl Niño or La Niña occurred are recognized using the Oceanic Niño Index (ONI). The impact of the most significant events, occurred between 2008-2012 and 2015-2016, over rainfall patterns and on total water storage is analyzed. Regions of characteristic behaviour of each phase are recognized using global precipitation model CMAP. The greatest differences with respect to average values occur between December 2015 and March 2016. A decrease up to 60% in rainfall is observed in the northern region of the South American continent. In order to evaluate water storage anomalies GRACE satellite mission data is assessed. A decrease up to 60 cm in Brazil northern region and an increase up to 40 cm in the southern region is observed during 2015-2016 El Niño event. Furthermore, the effect on the vertical component of the coordinates is investigated. Positive anomalies are found in the northern region of South America during the 2015-2016 event, while a significant opposite effect is detected in the southern equatorial region.

Downloads

Download data is not yet available.

References

Aceituno, P., (1988). On the Functioning of the Southern Oscillation in the South American Sector. Part I: Surface Climate. Monthly Weather Review, 116, 505.

Altamimi, Z., X. Collilieux, L. Metivier, (2011). ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy, 85, 457-473.

Bevis, M., E. Kendrick, A. Cser, R. Smalley, (2004). Geodetic measurement of the local elastic response to the changing mass of water in Lago Laja, Chile. Physics of the Earth and Planetary Interiors, Volumen 141, 71-78.

Bevis, M., D. Alsdorf, E. Kendrick, L. P. Fortes, B. Forsberg, R. Smalley, J. Becker, (2005). Seasonal fluctuations in the mass of the Amazon River system and Earth's elastic response. Geophysical Research Letters, 32, 16308.

Bevis, M., A. Brown, (2014). Trajectory models and reference frames for crustal motion geodesy..Journal of Geodesy, 88, 283-311.

Bruinsma, S., J.M. Lemoine, R. Biancale, N. Vales, (2010). CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Advances in Space Research, 45, 587-601.

Brunini, C., S. Costa, V. Mackern, W. Martínez, L. Sánchez, W. Seemüller, A. da Silva, (2009). SIRGAS: ITRF densification in Latin America and the Caribbean. EGU General Assembly Conference Abstracts, 11, 2105.

Brunini,C., H. Drewes, L. Sánchez, V. Mackern, and L. Mateo, (2010). Controlling seasonal effects on the weekly realization of the SIRGAS Reference Frame. EGU General Assembly Conference Abstracts, 12, 2006.

Chang, P., D. S. Battisti, (1998). The physics of El Niño. Physics World, 11.

Chen, J. L., C. R. Wilson, B. D. Tapley, Z. L. Yang, G. Y. Niu (2009). 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. Journal of Geophysical Research (Solid Earth), 114, B05404.

Chen, J. L., C. R. Wilson, B. D. Tapley, (2010). The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resources Research, 46: W12526,

Collilieux, X., T. van Dam, J. Ray, D. Coulot, L. Metivier, Z. Altamimi, (2012). Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. Journal of Geodesy, 86, 1-14.

Creutzfeldt, B., J. Kennedy, P. A. Ferre, (2012). Water-storage change measured with high-precision gravimetry at a groundwater recharge facility in Tucson, USA. AGU Fall Meeting Abstracts.

Climate Prediction Center, Center for Weather and Climate Prediction, NOAA

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. Datos extraídos en 2017

Demoulin, A., B. Ducarme, M. Everaerts, (2007). Seasonal height change influence in GPS and gravimetric campaign data. Journal of Geodynamics, 43, 308-319.

Dong, D., P. Fang, Y. Bock, M. K. Cheng, S. Miyazaki, (2002). Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research (Solid Earth), 107, 2075.

Elósegui, P., J. L. Davis, J. X. Mitrovica, R. A. Bennett, B. P. Wernicke, (2003). Crustal loading near Great Salt Lake, Utah. Geophysical Research Letters, 30,11-1.

Frappart, F., F. Papa, J. S. Famiglietti, C. Prigent, W. B. Rossow, F. Seyler, (2008). Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin. Journal of Geophysical Research (Atmospheres), 113, D21104.

Frappart, F., L. Seoane, G. Ramillien, (2012). Detection of large flood events using GRACE regional solutions. In A. Abbasi and N. Giesen, editors, EGU General Assembly Conference Abstracts, 14, 2593.

Grimm, A. M., V. R. Barros, M. E. Doyle, (2000). Climate Variability in Southern South America Associated with El Niño and La Niña Events. Journal of Climate, 13, 35-58.

Grimm, A. M., (2003). The El Niño Impact on the Summer Monsoon in Brazil: Regional Processes versus Remote Influences. Journal of Climate, 16, 263-280.

Grimm A. M., R. G. Tedeschi, (2009). ENSO and extreme events of rainfall and stream flow in South America. In D. N. Arabelos and C. C. Tscherning, editors, EGU General Assembly Conference Abstracts, 11, 1042.

Guimaraes, G. N., D. Blitzkow, A. C. O. C. de Matos, F. G. V. Almeida, A. C. B. Barbosa, (2012). Analysis of the Crust Displacement in Amazon Basin. Springer Berlin Heidelberg, Berlin, 885-891.

Guo, H. T. Jiang, (2006). Impacts of Climate Variations on Runoff Coefficients in the Poyang Lake Basin, China, 1955-2002. AGU Fall Meeting Abstracts.

Lemoine, J.M., S. Bruinsma, P. Gegout, R. Biancale, S. Bourgogne, (2013). Release 3 of the GRACE gravity solutions from CNES/GRGS.EGU General Assembly Conference Abstracts, 15, 11123.

Mangiarotti, S., A. Cazenave, L. Soudarin, J. F. CreTaux, (2001). Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy. Journal of Geophysical Research, 106, 4277-4291.

Papa, F., F. Frappart, A. Güntner, C. Prigent, F. Aires, A. C. V. Getirana, R. Maurer, (2013). Surface freshwater storage and variability in the Amazon basin from multi-satellite observations, 1993-2007. Journal of Geophysical Research (Atmospheres), 118, 11.

Philander, G., (1990). El Niño, La Niña, and the Southern Oscillation, International Geophysics. 46. Academic Press, San Diego, CA.

Ropelewski, C. F., M. S. Halpert, (1987). Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115, 1606.

Ropelewski, C. F., M. S. Halpert, (1989). Precipitation Patterns Associated with the High Index Phase of the Southern Oscillation. Journal of Climate, 2, 268-284.

Sánchez, L., M. Seitz, (2011). Recent activities of the IGS regional network associate analysis centre for sirgas. Technical Report 87, DFGI, Munich, Germany.

Sánchez, L., C. Brunini, H. Drewes, V. Mackern, A. da Silva, (2013). SIRGAS: the core geodetic infrastructure in Latin America and the Caribbean. AGU Spring Meeting Abstracts.

Sánchez, L., H. Drewes, (2016). VEMOS2015: Velocity and deformation model for Latin America and the Caribbean. Journal of Geodynamics, PANGAEA, 102, 1-23, doi:10.1016/j.jog.2016.06.005.

Schmidt, R., P. Schwintzer, F. Flechtner, C. Reigber, A. Güntner, P. Döll, G. Ramillien, A. Cazenave, S. Petrovic, H. Jochmann, J. Wünsch, (2006). GRACE observations of changes in continental water storage. Global and Planetary Change, 50, 112-126.

Seneviratne, S. I., P. Viterbo, D. Lüthi, C. Schär, (2004). Inferring Changes in Terrestrial Water Storage Using ERA-40 Reanalysis Data: The Mississippi River Basin. Journal of Climate, 17, 2039-2057.

Sosnica, K., D. Thaller, R. Dach, A. Jäggi, G. Beutler, (2013). Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. Journal of Geodesy, 87, 751-769.

Tapley, B. D., S. Bettadpur, M. Watkins, C. Reigber, (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31, 9607.

Tedeschi, R. G., A. M. Grimm, I. F. A. Cavalcanti, (2015). Influence of Central and East ENSO on extreme events of precipitation in South America during austral spring and summer. International Journal of Climatology, 35, 2045-2064.

Tedeschi, R. G., A. M. Grimm, and I. F. A. Cavalcanti, (2016). Influence of Central and East ENSO on precipitation and its extreme events in South America during austral autumn and winter. International Journal of Climatology, 36, 4797-4814.

Tregoning,P., T. van Dam, (2005). Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. Journal of Geophysical Research (Solid Earth), 110, B03408.

van Dam, T. M., G. Blewitt, M. B. Heflin, (1994). Atmospheric pressure loading effects on Global Positioning System coordinate determinations. Journal of Geophysical Research, 99:23939.

van Dam, T., J. Wahr, P. C. D. Milly, A. B. Shmakin, G. Blewitt, D. Lavallee, K. M. Larson, (2001). Crustal displacements due to continental water loading. Geophysical Research Letters, 28, 651-654.

Wahr, J. M., S. Swenson, V. Zlotnicki, I. Velicogna, (2004). Time-variable gravity from GRACE: First results. Geophysical Research Letters, 31, 11501.

Xie, P., P. A. Arkin., (1997). Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs. Bulletin of the American Meteorological Society, 78, 2539-2558.

Zou, R., J. T. Freymueller, K. Ding, S. Yang, Q. Wang, (2014). Evaluating seasonal loading models and their impact on global and regional reference frame alignment. Journal of Geophysical Research (Solid Earth), 119, 1337-1358.

Zygmunt, M., M. Rajner, T. Liwosz, (2016). Assessment of continental hydrosphere loading using GNSS measurements. Reports on Geodesy and Geoinformatics, 101, 36-53.

Published

2017-11-06

How to Cite

Galván, R., Carbonetti, M., Gende, M., & Brunini, C. (2017). Impact of the extreme 2015-2016 enos event on the geometry of the earth surface in the equatorial region of south America. Geoacta, 42(2), 23–44. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13594

Issue

Section

Scientific work