Simulación de la pequeña edad de hielo usando el modelo EdGCM

Authors

  • Reinaldo A. Maenza Universidad de Buenos Aires, Facultad de ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos
  • Rosa H. Compagnucci Universidad de Buenos Aires, Facultad de ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, CONICET

Keywords:

Maunder Minimum, Paleoclimate, EdGCM model simulations, Irradiance, Carbon Dioxide

Abstract

The Little Ice Age (LIA) was a cold period that ranged from taken part of the century XIV until taken part of the century XIX. In the period occurred three pulses of minimum values of temperature and will study the second of them comprised between 1645-1715 designated Maunder Minimum (MM). The decrease of the solar activity, the increase of the volcanic activity and the change in the Carbon Dioxide concentrations were the main forcings during these periods. In present work we realize distinct simulations of the climatic conditions for the South Hemisphere, by means of the General Circulation Model EdGCM, with the end to obtain stages of answer to the changes of irradiance and CO2 for the MM. At the same time, the climatic differences between years of maxima and minimum values of sunshine during the century XX determined by means of the results of the re-analysis of the NCEP/NCAR, compare with the differences between the current conditions and the ones of the MM, simulated by the model. The anomalies between the XX century and the MM obtained with the EdGCM are in agree qualitatively, and also quantitatively in some locations, with the proxy data information for various regions of the Hemisphere South. The annual temperature anomalies, between the MM and the 20th century ending conditions, are negative for both hemispheres and the temperature anomalies result more intense on semester November-April. Furthermore, over South America, shows a more intense centre in subtropical latitude and central and south Patagonia. The cold pattern obtained by the model is in agreement, on magnitude too, with proxy information obtained in some South America regions. The westerly wind component undergoes a shift to lower latitudes during the MM. The atmospheric circulation anomalies obtained in the simulations, show a pattern, over middle and high latitudes, where alternate three or four positive and negative anomaly centres, which is in agreement with a greater meridional component of the flux. Both patterns are similar to those present during El Niño events.

Downloads

Download data is not yet available.

References

Bertrand, S., Boës, X., Castiaux, J., Charlet, F., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B. and Fagel, N., 2005. Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 yr and its climatic significance. Quaternary Research 64: 163-175.

Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R Murtugudde,1997. Twentieth-century sea surface temperature trends, Science, 275, 957 – 960.

Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996. An ocean dynamical thermostat, J. Clim., 9, 2190 – 2196.

Crowley, T.J. and G.R. North, 1991, Paleoclimatology, Oxford Monographs on Geology and Geophysics 18, 349 págs.

Deschamps, J.R., O. Otero y E. P. Tonni, 2003. “Cambio climático en la pampa bonaerense: las precipitaciones desde los siglos XVIII al XX”. Universidad de Belgrano, Departamento de Investigación, Documentos de Trabajo 109: 1-18.

Fischer-Bruns, I., Cubasch, U., von Storch, H., Zorita, E., González-Rouco, F. and Luterbacher, J., 2002. Modelling the Late Maunder Minimum with a 3-dimensional OAGCM. CLIVAR Exchanges, 7: 59-61. International CLIVAR Project Office, Southampton, UK, ISSN No. 1026-0471.

Fritts, H. C., G. R: Logfren, and G. A. Gordon, 1979. Variations in climate since 1602 as reconstructed from tree rings. Quat. Res. 12:18-46.

Hughes, M.K., y H.F. Diaz, 1994: Was there a Medieval Warm Period, and if so, where and when? Clim. Change, 26(2–3), 109–142.

IPCC, 2007, IPCC Fourth Assessment Report: Climate Change 2007, Working Group I: The Physical Science Basis of Climate Change, Chapter 6: Paleoclimate,Online in: http://ipccwg1.ucar.edu/wg1/wg1-report.html

Koch, J. y Kilian, R., 2005. "Little Ice Age" glacier fluctuations, Gran Campo Nevado, southernmost Chile. The Holocene 15.: 20-28.

Kreutz, K.J., Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I. and Pittalwala, I.I., 1997: Bipolar changes in atmospheric circulation during the Little Ice Age. Science, 277: 1294–1296.

Lamb, H. H., 1979. Climate variation and changes in the wind and ocean circulation: The Little Ice Age in the North Atlantic. Quat. Res. 11:1-20.

Lamb, H.H., 1982 “Climate, History and the Modern World.” 387pp Methuen, London.

Langematz U., A. Claußnitzer, K. Matthes, and M. Kunze, 2005, The climate during the Maunder Minimum: A Simulation with the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM), J. Atmos. Sol. Terr. Phys., 67, 55-69.

Lean, J.. 2004. Solar Irradiance Reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2004-035. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.

Le Roy Ladurie, E. y Baulant, B., 1980, Grape harvests from the fifteenth through the nineteenth centurias. Interdisc. Hist. 10:839-849.

Magaña, V. y Ambrizzi, T.: Dynamics of subtropical vertical motions over the Americas during El Niño boreal winters, Atmósfera, 18(4), 211–233, 2005.

Mann, M., M. Cane, S. Zebiak, and A. Clement (2005), Volcanic and solar forcing of the tropical Pacific over the past 1000 years, J. Clim., 18, 447– 456.

Meyer, I. y Wagner, S, 2008, The Little Ice Age in southern Patagonia: Comparison between paleoecological reconstructions and downscaled model output of a GCM simulation. PAGES News 16:12-13.

Neukom, R., Luterbacher, J., Villalba, R., Küttel, M., Frank, D., Jones, P.D., Grosjean, M., Wanner, H., Aravena, J.C., Black, D.E., Christie, D.A., D’Arrigo, R., Lara, A., Morales, M., Soliz-Gamboa, C., Srur, A., Urrutia, R. y von Gunten, L., 2010. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Climate Dynamics doi: https://doi.org/10.1007/s00382-010-0793-3

Niebauer, H.J., 1988, Effects of El Nino-Southern Oscillation and North Pacific weather patterns on interannual variability in the subarctic Bering Sea, Journal of Geophysical Research 93 (1988), pp. 5051–5068.

Parkinson, C. L., 1990, Search for the Little Ice Age in Southern Ocean sea ice records. Ann. Glac. 14:221-225.

Robertson A., Overpeck J., Rind D., Mosley-Thompson E., Zielinski G., Lean J., Koch D., Penner J., Tegen I., y Healy R., 2001: Hypothesized Climate Forcing Time Series for the Last 500 Years Journal of Geophysical Research, v.106, No. D14, pp. 14,783-14,803.

Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic oscillation and European climate. Nature, 398, 320-323.

Shindell, D.T., G.A. Schmidt, M.E. Mann, D. Rind, y A. Waple, 2001: Solar forcing of regional climate change during the Maunder Minimum. Science, 294, 2149-2152.

Tonni, E.P., 1990, Mamíferos del Holoceno en la provincia de Buenos Aires. Paula-Coutiana, Porto Alegre (4):3-21.

Villalba, R, Lara, A., Boninsegna, J.A., Masiokas, M., Delgado, S., Aravena, J.C., Roig, F.A., Schmelter, A., Wolodarsky, A. y Ripalta, A., 2003, Large-scale temperature changes across the Southern Andes: 20th century variations in the context of the past 400 years. Climatic Change, 59, 177–232.

Published

2010-11-08

How to Cite

Maenza, R. A., & Compagnucci, R. H. (2010). Simulación de la pequeña edad de hielo usando el modelo EdGCM. Geoacta, 35(2), 78–91. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13680

Issue

Section

Scientific work