Influencia de la marea astronómica sobre las variaciones del nivel del Río Negro en la zona de Carmen de Patagones

Authors

  • Enrique D’Onofrio Servicio de Hidrografía Naval – ESCM – INUN, Instituto de Geodesia y Geofísicas Aplicadas - FIUBA
  • Mónica Fiore Servicio de Hidrografía Naval – ESCM – INUN, Departamento de Ciencias de la Atmósfera y los Océanos, FCEN –UBA
  • Flavia Di Biase Servicio de Hidrografía Naval – ESCM – INUN
  • Walter Grismeyer Servicio de Hidrografía Naval – ESCM – INUN
  • Alejandro Saladino Servicio de Hidrografía Naval – ESCM – INUN

Keywords:

tide, fluvial dynamic, harmonic analysis

Abstract

The Río Negro, natural limit between Buenos Aires and Río Negro provinces, is one of the most important rivers of the Patagonia that ends in the Atlantic Ocean. It is navigable in the stretch between the mouth and Carmen de Patagones by vessels up to 2.04 m draft, being more difficult upstream because of irregularities in depth. The Atlantic Ocean tidal wave enters into the river producing a semidiurnal regime up to Carmen de Patagones. Knowledge of the tidal wave on this part of the Río Negro is fundamental to the calibration of numerical models, the improvement of flood warning systems and decision related to coastal management. In this paper four sets of tide measurements are analyzed, two obtained in the Carmen de Patagones hydrometer for a period of 608 and 731 days, other of 77 days coming from a staff installed in the kilometer 18 of the river and the last one of 79 days obtained with a pressure sensor anchored close to Punta Redonda (mouth of the Río Negro). Power spectrum of observed levels for the three localities are calculated and compared to detect energy changes produced in the frequency band corresponding to the astronomical tide. The comparison shows that the energy of the semidiurnal and diurnal components decreases 22% and 45% respectively from the mouth of the Río Negro to Carmen de Patagones. In contrast there is a slight increase in energy corresponding to the frequency components of the fourth diurnal. This can be explained by non-linear processes induced by shallow water and irregularities in the morphology of the bottom of the river. To obtain tidal amplitudes and tidal phases, harmonic analyses by the method of least squares are made. Diurnal amplitudes in Carmen de Patagones are in average 49% of those obtained in Punta Redonda, while for the semidiurnal it is a 42%. To study variations in the mean levels due to the different flows of the river and storm waves in Carmen de Patagones, the convolution of observed levels with a low-pass filter designed from the Hamming window is carried out. For the period considered, there is a maximum difference of 156 cm in mean levels and storm waves are detected. Finally, to study the influence of different river’s caudal in the astronomical tide, harmonic analysis are made for different mean levels achieved by the river in Carmen de Patagones. It is found that a decrease in the mean level of 156 cm, has a 60 cm increase in the amplitude of the M2 component.

Downloads

Download data is not yet available.

References

Andersen O.A., 1999. Shallow water tides in the northwest European shelf region from TOPEX/POSEIDON altimetry, J. Geophys. Res., 104(C4), 7729–7741.

D’Onofrio, E. E., 1984. Desarrollo de un nuevo sistema de procesamiento de información de marea. Informe Técnico Nº25/84, Departamento Oceanografía, Servicio de Hidrografía Naval. 167 pág.

Foreman, M. G. M., 1977. Manual for tidal heights analysis and prediction. Pac. Mar. Sci., Inst. of Ocean Sci., Patricia Bay, Sidney, B. C. Canadá. Rep. 77-10,97pp.

Godin, G., 1972. The Analysis of Tides, University of Toronto Press, Toronto, 264 p.

INDEC. Censo Nacional de Población, Hogares y Viviendas 1991 y Censo Nacional de Población, Hogares y Viviendas 2001. www.indec.mecon.ar/nuevaweb/cuadros/74/habitat2.xls

Hamming R:A:, 1977. Digital filters. Prentice – Hall, 223pp.

Merg C. y Petri D., 1998. Red Alerta Sudestadas en el Valle Inferior del Río Negro Departamento Provincial de Aguas Provincia de Río Negro, Viedma, 21p.

Oppenheim and Shafer, 1975. Digital Signal Processing, Prentice-hall, p 556).

Oppenheim, A.V., and R.W. Schafer, 1989. Discrete-Time Signal Processing, Prentice-Hall, pp. 447-448

Pawlowicz, R., Beardsley B., and Lentz S., 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comp. Geosci., 28, 929-937.

Petri D., 1992. Informe Crecida 1992 en el Curso. Inferior del Río Negro. Departamento Provincial de Aguas. 10p.

Prefectura Naval Argentina, 2008. Sitio Web http://www.prefecturanaval.gov.ar/

Pugh, D. T., 1987. Tides, Surges and Mean Sea-Level. John Wiley &Sons Ltd. 472 pp.

Servicio de Hidrografía Naval, 2000. Derrotero Argentino. Parte II, Costa del Atlántico. Armada Argentina. 534 p.

Servicio de Hidrografía Naval, 2009. Tablas de Marea. H-610. 643 pág.

Schureman P., 1988. Manual of Harmonic Analysis and Prediction of Tides, Coast and Geodetic Survey, Special Publication No. 98, 317 p.

SNIH, 2004. Cartografía hídrica superficial de la provincia de Río Negro. Sistema Nacional de Información Hídrica. 3 p.

Stoica, P., and R.L. Moses, 1997. Introduction to Spectral Analysis, Prentice-Hall, Englewood Cliffs, NJ, pp. 52-54

UNESCO, 1991. Balance Hídrico de la República Argentina. Memoria Descriptiva, 32p.

Welch, P.D, 1967. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Trans. Audio Electroacoustics, Vol. AU-15, pp. 70-73.

Published

2010-11-08

How to Cite

D’Onofrio, E., Fiore, M., Di Biase, F., Grismeyer, W., & Saladino, A. (2010). Influencia de la marea astronómica sobre las variaciones del nivel del Río Negro en la zona de Carmen de Patagones. Geoacta, 35(2), 92–104. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13681

Issue

Section

Reports