Mysteries and oddities of the end of the Precambrian: A paleomagnetic approach

Authors

  • Augusto E. Rapalini Laboratorio de Paleomagnetismo Daniel A. Valencio, Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET

Keywords:

history of the earth, paleomagnetism, precambrian period

Abstract

The Ediacaran (or Ediacaran) is the terminal period of the Precambrian, extending from 635 to 541 million years ago (Ma). During this period the planet appears to have experienced a series of extraordinarily singular events and processes, whose actual existence and detailed characteristics are the subject of much debate and controversy. Some of the events that are more or less certainly investigated, discussed and analyzed at present are: 1) the appearance of the first complex biota of multicellular organisms in Earth's history but which would leave no successors in the Phanerozoic; 2) the largest δ 13C isotopic excursion in the history of the planet (Shuram excursion) and its relationship with the evolution of the oceans; 3) the existence of a glaciation that reached low latitudes (Gaskiers glaciation) and its global paleoenvironmental impacts; 4) the chronology and kinematics of the final rupture of the supercontinent Rodinia and the subsequent formation of Gondwana; 5) the possibility of very fast true polar displacements of about 90° by exchange of the inertial axes of the planet; 6) the possibility that the magnetic poles were located for long periods at the equator; 7) an ultraweak magnetic field, with the lowest paleointensity on record; 8) a hyperactive magnetic field, with the maximum frequency of known polarity reversions; 9) the possible beginning of the formation of the Internal nucleus and the subsequent change in the mode of the terrestrial geodynamo; and many more. Through systematic paleomagnetic studies it is possible to provide valuable information to resolve many of these questions. For two decades, in the Daniel A. Valencio Paleomagnetism Laboratory of the IGEBA we have been developing systematic multidisciplinary studies in sedimentary and volcanic Ediacaran rocks of the Río de la Plata craton. These investigations are nurtured by a close and continuous collaboration with colleagues from other research groups in Argentina, Brazil and Uruguay. The studies include mainly paleomagnetic investigations in order to reconstruct the paleogeographic evolution of the Ediacaran craton and to contribute to understand the kinematics of the formation of Gondwana. Recently we are also advancing in the knowledge of the polarity reversions of the magnetic paleofield in the late Ediacaran. Accurate geochronological dating, systematic isotopic studies and recent spectacular fossil finds, in addition to paleomagnetic information, are significantly increasing our knowledge of a period that until two decades ago was almost unknown. These advances include a schematic reconstruction of the paleogeographic evolution of the La Plata River craton between approximately 600 and 550 Ma, during which time it would have migrated from low to high latitudes. With this information and that of other West Gondwana cratons, constraints on the ages of annexation with Congo-São Francisco and West Africa are emerging. They also allow speculation with more observational support on the possible existence (or not) of a big ocean called Clymene in late stages of Gondwana formation. The probable record of the Shuram excursion in calcareous sediments of the craton is a concrete possibility as chemostratigraphic studies progress. Although still incipient, the first magnetostratigraphic results we are obtaining suggest the apparent presence of rapid polarity reversions. This succession of new results marks limits to certain models or non-current proposals while it is compatible with others, opening an important number of new questions. In this paper we present a brief summary of the current global knowledge of many of these controversies, as well as the progress of research in our country.

Downloads

Download data is not yet available.

References

Abrajevitch, A., & Van der Voo, R. (2010). Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis. Earth and Planetary Science Letters, 293(1-2), 164-170.

Afonso, J., Franceschinis, P., Rapalini, A., Arrouy, M. J., Poiré, D., & Trindade, R. I. F. (2019) Middle to Late Ediacaran Magnetostratigraphy of the Avellaneda Formation, Rio de La Plata Craton. Latinmag Letters, 9, Special Issue, B09-O, 1-6.

Afonso, J., Trindade, R., Franceschinis, P., & Rapalini, A. (2020). Magnetostratigraphy and Carbon isotopes of Ediacaran Avellaneda Formation, Rio de La Plata Craton, Argentina. In EGU General Assembly Conference Abstracts (p. 1162).

Arrouy, M.J., Poiré, D., Gómez Peral, L.E., Canalicchio, J.M., 2015. Sedimentología y estratigrafía del grupo La Providencia (nom. nov.): cubierta superior neoproterozoica, Sistema de Tandilia, Argentina. Latin American Journal of Sedimentology and Basin Analysis. 22, 2, 171–189

Arrouy, M. J., Warren, L. V., Quaglio, F., Poiré, D. G., Simões, M. G., Rosa, M. B., & Peral, L. E. G. (2016). Ediacaran discs from South America: probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean. Scientific Reports, 6(1), 1-10.

Aubert, J., & Wicht, J. (2004). Axial vs. equatorial dipolar dynamo models with implications for planetary magnetic fields. Earth and Planetary Science Letters, 221(1-4), 409-419.

Aubert, J., Labrosse, S., & Poitou, C. (2009). Modelling the palaeo-evolution of the geodynamo. Geophysical Journal International, 179(3), 1414-1428.

Basu, A., Field, M. R., McCulloch, D. G., & Boehler, R. (2020). New measurement of melting and thermal conductivity of iron close to outer core conditions. Geoscience Frontiers, 11(2), 565-568.

Bazhenov, M. L., Levashova, N. M., Meert, J. G., Golovanova, I. V., Danukalov, K. N., & Fedorova, N. M. (2016). Late Ediacaran magnetostratigraphy of Baltica: evidence for magnetic field hyperactivity?. Earth and Planetary Science Letters, 435, 124-135.

Bono, R. K., & Tarduno, J. A. (2015). A stable Ediacaran Earth recorded by single silicate crystals of the ca. 565 Ma Sept-Îles intrusion. Geology, 43(2), 131-134.

Briggs, D. E. (2015). The cambrian explosion. Current Biology, 25(19), R864-R868.

Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., Gladkochub, D. P., & Murphy, J. B. (2016). Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449, 118-126.

Cingolani, C. A. (2011). The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: an overview. International Journal of Earth Sciences, 100(2), 221-242.

Duan, Z., Liu, Q., Ren, S., Li, L., Deng, X., & Liu, J. (2018). Magnetic reversal frequency in the Lower Cambrian Niutitang Formation, Hunan Province, South China. Geophysical Journal International, 214(2), 1301-1312.

Evans, D. A. (2021). Pannotia under prosecution. Geological Society, London, Special Publications, 503(1), 63-81.

Fike, D. A., Grotzinger, J. P., Pratt, L. M., & Summons, R. E. (2006). Oxidation of the Ediacaran Ocean. Nature, 444(7120), 744-747.

Franceschinis, P.R. (2019). Evolución paleogeográfica del cratón del Río de la Plata en el Precámbrico y su relación con el terreno Pampia en el Cámbrico. Universidad de Buenos Aires, Tesis Doctoral, inédita. 357 pp.

Franceschinis, P.R., Afonso, J., Arouy, M.J., Gómez Peral, L., Poiré, D.G., Trindade, R.I.F & Rapalini, A.E. (2021). Paleogeography of the Río de la Plata craton in the Ediacaran: paleomagnetic poles for the Avellaneda and Cerro Negro Formations, Tandilia System, Argentina. Precambrian Research, enviado.

Gómez Peral, L. E., Poiré, D. G., Strauss, H., & Zimmermann, U. (2007). Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bayas Group, Tandilia System, Argentina. Chemical Geology, 237(1-2), 109-128.

Gómez-Peral, L. E., Kaufman, A. J., Arrouy, M. J., Richiano, S., Sial, A. N., Poiré, D. G., & Ferreira, V. P. (2018). Preglacial palaeoenvironmental evolution of the ediacaran loma Negra formation, far southwestern gondwana, Argentina. Precambrian Research, 315, 120-137.

Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (Eds.). (2 020). Geologic Time Scale 2020. Elsevier.

Grotzinger, J. P., Fike, D. A., & Fischer, W. W. (2011). Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geoscience, 4(5), 285-292.

Hoffman, P. F. (1991). Did the breakout of Laurentia turn Gondwanaland inside-out?. Science, 252(5011), 1409-1412.

Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic snowball earth. science, 281(5381), 1342-1346.

Hsieh, W. P., Goncharov, A. F., Labrosse, S., Holtgrewe, N., Lobanov, S. S., Chuvashova, I. & Lin, J. F. (2020). Low thermal conductivity of iron-silicon alloys at Earth’s core conditions with implications for the geodynamo. Nature communications, 11(1), 1-7.

Kheraskova, T. N., Bush, V. A., Didenko, A. N., & Samygin, S. G. (2010). Breakup of Rodinia and early stages of evolution of the Paleoasian ocean. Geotectonics, 44(1), 3-24.

Kirschvink, J. L., Ripperdan, R. L., & Evans, D. A. (1997). Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander. Science, 277(5325), 541-545.

Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N., & Goncharov, A. F. (2016). Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature, 534(7605), 99-101.

Landeau, M., Aubert, J., & Olson, P. (2017). The signature of inner-core nucleation on the geodynamo. Earth and Planetary Science Letters, 465, 193-204.

Levashova, N. M., Golovanova, I. V., Rudko, D. V., Danukalov, K. N., Rudko, S. V., Salmanova, R. Y., & Meert, J. G. (2021). Late Ediacaran magnetic field hyperactivity: Quantifying the reversal frequency in the Zigan Formation, Southern Urals, Russia. Gondwana Research, 94, 133-142.

Li, Z. X., Bogdanova, S., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., ... & Vernikovsky, V. (2008). Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian research, 160(1-2), 179-210.

Li, Z., Cao, M., Loyd, S. J., Algeo, T. J., Zhao, H., Wang, X., ... & Chen, Z. Q. (2020). Transient and stepwise ocean oxygenation during the late Ediacaran Shuram Excursion: Insights from carbonate δ238U of northwestern Mexico. Precambrian Research, 344, 105741.

Li, Z. X., Evans, D. A., & Halverson, G. P. (2013). Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology, 294, 219-232.

Liu, A. G., & Tindal, B. H. (2021). Ediacaran macrofossils prior to the~ 580 Ma Gaskiers glaciation in Newfoundland, Canada. Lethaia, 54(2), 260-270.

Marshall, C. R. (2006). Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci., 34, 355-384.

McCausland, P. J., Van der Voo, R., & Hall, C. M. (2007). Circum-Iapetus paleogeography of the Precambrian–Cambrian transition with a new paleomagnetic constraint from Laurentia. Precambrian Research, 156(3-4), 125-152.

McMenamin, M. A. (2018). Deep time analysis: A coherent view of the history of life. Springer. 273 pp.

McMenamin, M.A.S. & McMenamin, D.L.S. (1990). The emergence of animals: The Cambrian breakthrough. Columbia University Press, New York. 217 pp

Meert, J. G., & Lieberman, B. S. (2008). The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana research, 14(1-2), 5-21.

Meert, J. G., & Torsvik, T. H. (2003). The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 375(1-4), 261-288.

Meert, J. G., Van der Voo, R., & Payne, T. W. (1994). Paleomagnetism of the Catoctin volcanic province: A new Vendian‐Cambrian apparent polar wander path for North America. Journal of Geophysical Research: Solid Earth, 99(B3), 4625-4641.

Meert, J. G., Levashova, N. M., Bazhenov, M. L., & Landing, E. (2016). Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research, 34, 149-157.

Merrill, R.T., McElhinny, M.W., McFadden, P.L. (1998). The Magnetic Field of the Earth. International Geophysical Series, v.63. Academic Press. 533 pp.

Minguez, D., & Kodama, K. P. (2017). Rock magnetic chronostratigraphy of the Shuram carbon isotope excursion: Wonoka Formation, Australia. Geology, 45(6), 567-570.

Moloto-A-Kenguemba, G. R., Trindade, R. I., Monié, P., Nédélec, A., & Siqueira, R. (2008). A late Neoproterozoic paleomagnetic pole for the Congo craton: Tectonic setting, paleomagnetism and geochronology of the Nola dike swarm (Central African Republic). Precambrian Research, 164(3-4), 214-226.

Murphy, J. B., Nance, R. D., Cawood, P. A., Collins, W. J., Dan, W., Doucet, L. S., Heron, P.J., Li, Z.X., Mitchell, R.N, Pisarevsky, S., Pufahl, P.K., Quesada, C., Spencer, C.J, Strachan, R.A. & Wu, L. (2021). Pannotia: in defence of its existence and geodynamic significance. Geological Society, London, Special Publications, 503(1), 13-39.

Pesonen, L.J., Salminen, J., Elming, S., Evans, D.A.T., Veikkolainen, T. (Eds.) (2021). Ancient Supercontinents and the Paleogeography of Earth. Elsevier, 646p.

Poiré, D. G., Peral, L. E. G., & Arrouy, M. J. (2018). The Glaciations in South America. In Geology of Southwest Gondwana (pp. 527-541). Springer, Cham.

Powell, C.M., 1995. Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents? Comment. Geology 23, 1053–1054

Prave, A. R., Condon, D. J., Hoffmann, K. H., Tapster, S., & Fallick, A. E. (2016). Duration and nature of the end-Cryogenian (Marinoan) glaciation. Geology, 44(8), 631-634.

Pu, J. P., Bowring, S. A., Ramezani, J., Myrow, P., Raub, T. D., Landing, E., Mills, A, Hodkins, E. & Macdonald, F. A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44(11), 955-958.

Rapalini, A. E. (2018). The assembly of western Gondwana: Reconstruction based on paleomagnetic data. In Geology of Southwest Gondwana (pp. 3-18). Springer, Cham.

Rapalini, A. E., Tohver, E., Bettucci, L. S., Lossada, A. C., Barcelona, H., & Pérez, C. (2015). The late Neoproterozoic Sierra de las Ánimas Magmatic Complex and Playa Hermosa Formation, southern Uruguay, revisited: Paleogeographic implications of new paleomagnetic and precise geochronologic data. Precambrian Research, 259, 143-155.

Rapalini, A.E., Franceschinis, P.R., Sanchez Bettucci, L., Arrouy, M.J. & Poiré, D.G., 2021. The Precambrian drift history and paleogeography of Rio de la Plata craton. En L. Pesonen et al. (Eds.), Ancient Supercontinents and the Paleogeography of Earth. Chapter 7. Elsevier. 243-262. ISBN 9780128185339

Retallack, G. J. (2013). Ediacaran Gaskiers glaciation of Newfoundland reconsidered. Journal of the Geological Society, 170(1), 19-36.

Robert, B., Besse, J., Blein, O., Greff-Lefftz, M., Baudin, T., Lopes, F., ... & Belbadaoui, M. (2017). Constraints on the Ediacaran inertial interchange true polar wander hypothesis: A new paleomagnetic study in Morocco (West African Craton). Precambrian Research, 295, 90-116.

Robert, B., Greff‐Lefftz, M., & Besse, J. (2018). True polar wander: A key indicator for plate configuration and mantle convection during the late Neoproterozoic. Geochemistry, Geophysics, Geosystems, 19(9), 3478-3495.

Symons, D. T. A., & Chiasson, A. D. (1991). Paleomagnetism of the Callander Complex and the Cambrian apparent polar wander path for North America. Canadian Journal of Earth Sciences, 28(3), 355-363.

Thallner, D., Biggin, A. J., & Halls, H. C. (2021). An extended period of extremely weak geomagnetic field suggested by palaeointensities from the Ediacaran Grenville dykes (SE Canada). Earth and Planetary Science Letters, 568, 117025.

Tohver, E., Trindade, R. I. F., Solum, J. G., Hall, C. M., Riccomini, C., & Nogueira, A. C. (2010). Closing the Clymene ocean and bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology, 38(3), 267-270.

Trindade, R. I., D'Agrella-Filho, M. S., Epof, I., & Neves, B. B. B. (2006). Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth and Planetary Science Letters, 244(1-2), 361-377.

Xiao, S. H., & Narbonne, G. M. (2020). The Ediacaran Period. In Geologic Time Scale 2020 (pp. 521-561). Elsevier.

Zhao, G., Wang, Y., Huang, B., Dong, Y., Li, S., Zhang, G., & Yu, S. (2018). Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186, 262-286.

Published

2022-12-07

How to Cite

Rapalini, A. E. (2022). Mysteries and oddities of the end of the Precambrian: A paleomagnetic approach. Geoacta, 43(2), 30–45. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/14285