Patterns of hydroclimatic variability in the central Andes (30-37°s) of Argentina
Keywords:
periodicity, climatic forcing, precipitation, flow, ArgentinaAbstract
Hydroclimatic processes are characterized by cycles that repeat with a certain frequency. In particular, precipitation and streamflow in the the Central Andes basins show a large interannual and decadal scale variability. Understanding the origin of these cycles allows us to identify the influence of ocean-atmosphere circulation on the components of the hydrological cycle to improve the management of water resources. The aim of this study is to identify the main climatic forcings associated with the modes of variability of precipitation and streamflows during the last 60 years in the main Central Andean rivers (San Juan, Mendoza, Tunuyán, Diamante, Atuel, Grande, and Barrancas basins). A coherence analysis between hydroclimatic variables and various climate indices facilitates the detection of those frequencies where the two time series interact. Significant correlations exist between the Oceanic Niño Index (ONI), precipitation, and streamflow. Higher intensity cycles were identified in the 2-8 year bands in the period between 1970-2000, which explains the high-frequency variability in precipitation and streamflow. The Pacific Decadal Oscillation (PDO) and streamflow in decadal periods show a significant coherence detected in the San Juan, Mendoza, and Atuel River basins, whereas, streamflow and precipitations records located south 35°S reveal a negative relation with the Southern Annular Mode (SAM) index.
Downloads
References
Agosta, E. y Compagnucci, R.H. (2012). Central-West Argentina Summer Precipitation Variability and Atmospheric Teleconnections. American Meteorological Society, Journal of Climate; 25 (5), 1657-1677. https://doi.org/10.1175/JCLI-D-11-00206.1
Bonfils, C. y Santer, B.D. (2011). Investigating the possibility of a human component in various pacific decadal oscillation indices. Clim. Dyn. 37, 1457–1468. https://doi.org/10.1007/s00382-010-0920-1
Branstator, G. y Selten, F. (2009). “Modes of Variability” and Climate Change, Journal of Climate, 22(10), 2639-2658. http://dx.doi.org/10.1175/2008JCLI2517.1
Caragunis, J.I. (2018). Variabilidad de baja frecuencia en los caudales de los ríos del centro-norte de la Argentina. Aplicación en el análisis de sequías hidrológicas. Tesis de Licenciatura en Cs. de la Atmósfera. UBA.
Compagnucci, R.H. y Vargas, W.M., (1998). Interannual variability of Cuyo rivers streamflow in Argentinean Andean mountains and ENSO events. International Journal of Climatology, 18, 1593–1609.
Compagnucci, R., Blanco, S., Figliola, A. y Jacovkis, P. (2000). Variability in subtropical Andean Argentinean Atuel River; a wavelet approach. Environmetrics, 11, 251-269.
CPC, consultado junio 2021. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
Fogt, RL. y Marshall, GJ. (2020). The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. WIRES Clim Change. 11, e652. https://doi.org/10.1002/wcc.652
Garreaud, R., Vuille, M., Compagnucci, R. y Marengo, J. (2009). Present day South American climate. Palaeogeogr., Palaeoclimatol., Palaeoecol., 281, 180–195. https://doi.org/10.1016/j.palaeo.2007.10.032
González-Reyes, Á., McPhee, J., Christie, D., Le Quesne, C., Szejner, P., Masiokas, M., Villalba, R., Muñoz, A. y Crespo, S. (2017). Spatiotemporal variations in hydroclimate across the Mediterranean Andes (30º-37º S) since the early twentieth century. Journal of Hydrometeorology, 18, 1929-1942. https://doi.org/10.1175/JHM-D-16-0004.1
Gouhier, T. C., Grinsted, A. y Simko, V. (2018). R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses (Version 0.20.17). Available from https://github.com/tgouhier/biwavelet
Grinsted, A., Moore, J. C. y Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561-566.
Harris, I., Jones, P.D., Osborna, T.J. y Listera, D.H. (2014). Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International journal of climatology, 34, 623–642.
IPCC, 2021a. Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte,C. Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution ofWorking Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte,V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E.Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press,Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256. https://dx.doi.org/10.1017/9781009157896.022
IPCC, 2021b. Annex IV: Modes of Variability [Cassou, C., A. Cherchi, Y. Kosaka (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2153–2192,doi: https://dx.doi.org/10.1017/9781009157896.018
Labat, D. (2008). Wavelet analysis of the annual discharge records of the world’s largest rivers. Advances in Water Resources, 31, 109–117.
Lauro, C., Vich, A. y Moreiras, S.M. (2016). Variabilidad del régimen fluvial en cuencas de la región de Cuyo. Geoacta, 40(2), 28-51.
Lauro, C., Vich, A. I. y Moreiras, S. M. (2019). Streamflow variability and its relationship with climate indices in western rivers of Argentina, Hydrol. Sci. J. 64(5), 607-619. doi: https://doi.org/10.1080/02626667.2019.1594820
Lauro, C., Vich, A. I.J., Otta, S., Moreiras, S.M., Vaccarino, E. y Bastidas, L. (2021). Recursos hídricos superficiales de la vertiente oriental de los Andes Centrales (28°-37°S) en contexto de variabilidad hidroclimática. Boletín De Estudios Geográficos (noviembre 2021–abril 2022), 116, 45-71.
Mantua, N.J., et al. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 1069–1079.
Mantua, N.J. y Hare, S.R. (2002). The Pacific decadal oscillation. Journal of Oceanography, 58, 35–44.
Marshall, G.J. (2003). Trends in the southern annular mode from observations and reanalyses. Journal of Climate, 16, 4134–4143. doi: https://doi.org/10.1175/1520-0442(2003)016%3C4134:TITSAM%3E2.0.CO;2
Masiokas, M. H., Villalba, R., Luckman, B. H., Le Quesne, C. y Aravena, J.C. (2006). Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: Large-scale atmospheric influences and implications for water resources in the region. J. Climate, 19, 6334–6352, doi: https://doi.org/10.1175/JCLI3969.1
Masiokas, Villalba, R., Luckman, B. H. y S. Mauget, (2010). Intra- to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30° and 37°S. J. Hydrometeor., 11, 822–831, doi: https://doi.org/10.1175/2010JHM1191.1
Masiokas, M.H., Cara, L., Villalba, R. Pitte, P., Luckman, B. H., Toum, E., Christie, D. A., Le Quesne C. y Mauget, S. (2019). Streamflow variations across the Andes (18°–55°S) during the instrumental era. Sci Rep 9,17879 https://doi.org/10.1038/s41598-019-53981-x
Norel, M., Kałczynski, M., Pinskwar, I., Krawiec, K. y Kundzewicz, Z.W. (2021). Climate Variability Indices. A Guided Tour. Geosciences, 11, 128. https://doi.org/10.3390/geosciences11030128.
Poveda, G., Vélez, J., Mesa, O., Hoyos, C., Salazar, L., Mejía, J., Barco, O. y Correa, P. (2002). Influencia de fenómenos macroclimáticos sobre el ciclo anual de la hidrología colombiana: cuantificación lineal, no lineal y percentiles probabilísticos. Meteorol. Colomb., 6, 121-130.
Rivera, J.A., Araneo, D.C. y Penalba, O.C., (2017). Threshold level approach for streamflow droughts analysis in the Central Andes of Argentina: A climatological assessment. Hydrological Sciences Journal 62(12), 1949-1964. https://doi.org/10.1080/02626667.2017.1367095
Rivera, J.A., Araneo, D.C., Penalba, O.C. y Villalba, R. (2018). Regional aspects of streamflow droughts in the Andean rivers of Patagonia, Argentina. Links with large-scale climatic oscillations. Hydrology Research 49(1), 134-149. https://doi.org/10.2166/nh.2017.207
Rivera, J.A., Otta, S., Lauro, C. y Zazulie, N. (2021). A decade of hydrological drought in Central-Western Argentina. Front. Water 3, 640544. https://doi.org/10.3389/frwa.2021.640544
Secretaría de Ambiente y Desarrollo Sustentable de la Nación. (2015). Tercera Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Cambio climático en Argentina; tendencias y proyecciones.
Schulte, J.A., Najjar, Raymond, G. y Ming Li. (2016). The influence of climate modes on streamflow in the Mid-Atlantic region of the United States. Journal of Hydrology: Regional Studies, 5, 80–99. http://dx.doi.org/10.1016/j.ejrh.2015.11.003
Screen, J.A., Bracegirdle, T.J. y Simmonds, I. (2018). Polar Climate Change as Manifest in Atmospheric Circulation. Curr. Clim. Change Rep 4, 383–395. https://doi.org/10.1007/s40641-018-0111-4
Singh, A., Delcroix, T. y Cravatte, S. (2011). Contrasting the flavours of El Niño-Southern Oscillation using sea surface salinity observations, Journal of Geophysical Research, 116 (C06016). https://doi.org/10.1029/2010JC006862
Thompson, D. W. J. y Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month‐to‐month variability. Journal of Climate, 13(5), 1000–1016. https://doi.org/10.1175/1520‐0442(2000)013%3C1000:AMITEC%3E2.0.CO;2
Torrence, C. y Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 61-78.
Torrence, C. y Webster, P.J. (1999) Interdecadal Changes in the ENSO-Monsoon System. Journal of Climate, 12, 2679-2690.
Trenberth, K.E. (1997). The definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771–2777.
van der Wiel, K. y Bintanja, R. (2021). Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes. Commun. Earth Environ, 2, 1. https://doi.org/10.1038/s43247-020-00077-4
Vera, C. y Osman, M. (2018). Activity of the Southern Annular Mode during 2015–2016 El Niño event and its impact on Southern Hemisphere climate anomalies. Int. J. Clim. https://doi.org/10.1002/joc.5419
Villalba, R., Lara, A., Masiokas, M.H., Urrutia, R., Luckman, B.H., Marshall, G.J., Mundo, I., Christie, D.A., Cook, E., Neukom, R., Allen, K., Fenwick, P., Boninsegna, J.A., Srur, A.M., Morales, M.S., Araneo, D., Palmer, J.G., Cuq, E., Aravena, J.C., Holz, A. y LeQuesne, C. (2012). Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nature Geoscience, 5, 793-798. https://doi.org/10.1038/ngeo1613
Wiedermann, M., Siegmund, J.F., Donges, J.F. y Donner, R.V. (2021). Differential Imprints of Distinct ENSO Flavors in Global Patterns of Very Low and High Seasonal Precipitation. Front. Clim. 3, 618548. https://doi.org/10.3389/fclim.2021.618548
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Starting in 2022 (Vol. 43 number 2) articles will be published in the journal under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0)
According to these terms, the material can be shared (copied and redistributed in any medium or format) and adapted (remixed, transformed and created from the material another work), provided that a) the authorship and the original source of its publication (journal and URL of the work), b) is not used for commercial purposes and c) the same license terms are maintained.
Prior to this date the articles were published in the journal under a Creative Commons Attribution license (CC BY)
In both cases, the acceptance of the originals by the journal implies the non-exclusive assignment of the economic rights of the authors in favor of the editor, who allows reuse, after editing (postprint), under the license that corresponds according to the edition.
Such assignment means, on the one hand, that after its publication (postprint) in the GEOACTA Magazine of the Association of Geophysicists and Geodesists, the authors can publish their work in any language, medium and format (in such cases, it is requested that it be recorded that the material was originally published in this journal); on the other, the authorization of the authors for the work to be harvested by SEDICI, the institutional repository of the National University of La Plata, and to be disseminated in the databases that the editorial team considers appropriate to increase visibility. of the publication and its authors.
Likewise, the journal encourages the authors so that after their publication in the Journal of the Association of Geophysicists and Geodesists, they deposit their productions in other institutional and thematic repositories, under the principle that offering society scientific production and Unrestricted academic scholarship contributes to a greater exchange of global knowledge.