Analysis of geomagnetic field and atmospheric pressure anomalies associated with seismic activity on the Scotia plates and Sandwich

Authors

  • María Alejandra Arecco Universidad de Buenos Aires, Instituto de Geodesia y Geofísica Aplicadas. Universidad de la Defensa Nacional
  • Patricia A. Larocca Universidad de Buenos Aires, Instituto de Geodesia y Geofísica Aplicadas
  • Lidia A. Otero Universidad de la Defensa Nacional. Ministerio de Defensa, CITEDEF, MINDEF-CONICET
  • Mariana C. Mora Universidad de Buenos Aires, Instituto de Geodesia y Geofísica Aplicadas
  • María Florencia Canero Ministerio de Defensa, Servicio de Hidrografía Naval

Keywords:

geomagnetic activity, atmospheric pressure, earthquakes, scotia plate

Abstract

Geomagnetic field and atmospheric pressure disturbances are analyzed on this work, related to seismic events. These are located on the Scotia and Sandwich plate-margins in the South Atlantic Ocean. Near the epicenters are placed the INTERMAGNET geomagnetic observatories: King Edward Point (KEP) on the South Georgia’ islands, Orcadas (ORC) on Orcadas’ islands, Argentina Island (AIA) on Antartica and Puerto Argentino (PST) on Malvinas Islands. Geomagnetic field records from the observatories are studied during the previous twenty four hours of the seismic event. As the horizontal geomagnetic component is the most sensitive one to these changes, results in the magnitude selected for the analysis. To avoid the diurnal variation effects on the geomagnetic data, the differences between the horizontal components of two observatories are calculated. It is important to remark that on the period of study severe geomagnetic storms are not registered due to a low Sun activity phase. Analyzing the mentioned differences with the wavelets method it is possible to observe ranges of high energy up to very high frequencies previous to the event; in addition to ± 2 nT magnetic peaks of amplitude on the oscillations and a variable duration when applied a low-pass filter. It is possible to detect abnormal variations on an interval of approximately 3 hours before seismic events for Mw ≥ 6.6. On the other hand, atmospheric pressure grids at the sea level global are analyzed, selected on the seism zone, on periods of two to four hours previous to the event, showing distinctive low and high pressure zones. The data is obtained from the MERRA-2 base. The temporal series makes evident a pressure local minimum few hours before the event due to the sea surface ascent/descent.

Downloads

Download data is not yet available.

References

Arai, N., Iwakuni, M., Watada, S., Imanishi, Y., Murayama T., y Nogami, M., (2011). Atmospheric boundary waves excited by the tsunami generation related to the 2011 great Tohoku‐Oki earthquake, Geophysical Research Letters, Vol. 38, L00G18, doi: https://doi.org/10.1029/2011GL049146

Arecco, M.A., Larocca P.A. y Mora M.C., (2020). Geomagnetismo y su relación con sismos. Un estudio en la microplaca de Sándwich del Sur, Revista defensa Nacional, v 4, 263-281.

Bartels, J. (1949). The standardized index, Ks, and the planetary index, Kp. IATME Bulletin 12B, p. 97- 120, International Union of Geodesy and Geophysics http://isgi.unistra.fr/IAGABulletins/IATME_Bulletin_12b_Herbert_Weisman

Blakely, R. (1996). Potential theory in gravity and magnetic applications. Cambridge University Press, p. 461, London.

DeDontney, N. y Rice, J. R., (2012). Tsunami wave analysis and possibility of splay fault rupture during the 2004 Indian Ocean earthquake. Pure and applied geophysics, 169(10), 1707-1735. Global Modeling and Assimilation Office, (2015). https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

Hayakawa, M., Kasahara, Y., y Nakamura T., et al. (2010). A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes, Journal of Geophysical Research, A, vol. 115, no. 9, Article ID A09305.

INTERMAGNET International Real-time Magnetic Observatory, https://intermagnet.github.io , last modified date: 2020-02-02.

Kanamori, H. (1986). Proceso de ruptura de los sismos de zona de subducción. Revista Anual de Ciencias Planetarias y de la Tierra, 14 (1), 293-322.

Kushwah, V., Singh, V. y Singh, B., (2009). Ultra-low frequency (ULF) amplitude observed at Agra (India) and their association with regional earthquakes. Phys. Chem Earth. 34, 367–272.

Larocca, P.A., Arecco, M.A. y Mora, M.C. (2021). Wavelet-based Characterization of Seismicity and Geomagnetic Disturbances in the Sandwich del Sur Micro-plate Area. Geofísica Internacional. 60 (4), 320-332. http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/2119/1882

Larocca, P., Fiore, M., Oreiro F., Vilariño, I. y Arecco, M.A. (2019). Estudio de parámetros geomagnéticos y su posible influencia sobre anomalías sismo-ionosféricas. In Proceedings of the Sixth Biennial Meeting of Latinmag, Fernando Poblete, C. I. Caballero M, (Eds), Latinmag Letters, 9, Special Issue, Proceedings A18, 1-6, Rancagua.

Leat, P.T., Smellie, J.L., Millar, I.L. y Larter, R.D. (2003). Magmatism in the South Sandwich arc. In: Larter, R.D., Leat, P.T. (Eds.), Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes. Geological Society, London Special Publications, 219, 285–313.

Livermore, R., Nankivell, A., Eagles G. y Morris, P. (2005). Paleogene opening of Drake Passage, Earth and Planetary Science Letters, 236, 459 – 470.

Loewe, C. A. y Prolss, G. W. (1997). Classification and Mean Behavior of Magnetic Storms, J. Geophys. Res. 102, 14209.

Mayaud P. N. (1980). Derivation, Meaning and Use of Geomagnetic Indices, AGU Geophys. Monograph 22.

Rienecker, M.M., Suarez, M.J., Gelaro R., et al. (2021). MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications, JOURNAL OF CLIMATE, 24, 3624-3648.

Ruiz, F., Sánchez, M., Martínez. P., Giménez, M., Leiva, F., Álvarez, O. y Introcaso, A. (2011). La estación magnética Zonda: estudio de perturbaciones magnéticas relacionadas con terremotos. San Juan, Argentina. Latinmag Letters, 1, Special Issue, A16, 1-7. Proceedings Tandil.

Scholz, C. H. (2019). The mechanics of earthquakes and faulting. Cambridge University Press.

Takeuchi, A. Okubo, K. y Takeuchi, N. (2012). Electric Signals on and under the Ground Surface Induced by Seismic Waves, International Journal of Geophysics Volume 2012, Article ID 270809. https://doi.org/10.1155/2012/270809

Takla E., A. Khashaba, Abdel Zaher M., Yoshikawa A. y Uozumi T. (2018). Anomalous ultra-low frequency signals possibly linked with seismic activities in Sumatra, Indonesia. NRIAG Journal of Astronomy and Geophysics, 7 (2), 247-252. https://doi.org/10.1016/j.nrjag.2018.04.004

Thomas, C., Livermore, R. y Pollitz, F. (2003). Motion of the Scotia Sea Plate, Geophys. J. Int. 155, 789–804

Published

2022-12-13

How to Cite

Arecco, M. A., Larocca, P. A., Otero, L. A., Mora, M. C., & Canero, M. F. (2022). Analysis of geomagnetic field and atmospheric pressure anomalies associated with seismic activity on the Scotia plates and Sandwich. Geoacta, 44(1), 23–34. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/14495

Issue

Section

Scientific work