Evaluation of a 5 pillars baseline for MED equipment calibration

Authors

  • José Romano Facultad de Ingeniería, Universidad Nacional de La Plata
  • Pablo Paús Facultad de Ingeniería, Universidad Nacional de La Plata

Keywords:

metrology, uncertainty, multiple linear regression (MLR), traceability, surveying

Abstract

This paper presents the implementation of a baseline for the calibration of electro-optical distance meters (MED) commonly used in engineering and surveying works. A baseline is made up of a series of fixed points aligned on the ground, and meets with a series of characteristics that allow determining the magnitudes of the systematic errors of a MED equipment together with their corresponding expressions of uncertainty (calibration parameters) from the observed distances. The distances between the points must be nominal values obtained with a higher precision equipment than those to be tested, they must also be traceable measurements. A baseline should be understood as a tool that makes it possible to generate observations of distances that constitute representative statistical samples of the measurements that are commonly carried out with the tested equipment.

This work covers the set of analyzes carried out on a baseline design, the most appropriate measurement procedure and the type of calculation adopted to achieve the results. In order to validate these proposals, experimental measurements were made with test equipment in a transitory baseline. To carry out these tests, equipment from the Argentinian German Geodetic Observatory (AGGO) was used, which complies with the technical specifications required to obtain the distances that were used as nominal values.

The implementation of a transitory baseline made it possible to develop the test on the test equipment, applying the developed procedures, and as a result its calibration parameters were obtained.

Downloads

Download data is not yet available.

References

García Balboa J.L., Ruiz Armenteros A.M., Mesa Mingorance J.L. (2011). Evaluación de la incertidumbre de medida de ángulos, distancias y desniveles medidos con instrumentación topográfica. Revista Mapping 149, septiembre/octubre de 2011.

Ghilani C.D., Wolf P.R. (2006). Adjustment Computations Spatial Data Analysis. 4ta edición.

ISO 17123-4. Optics and optical instruments. Field procedures for testing geodetic and surveying instruments. Part 4: Electro-optical distance meters (EDM measurements to reflectors). Second edition 2012.

Navidi W. (2006). Estadística para ingenieros. McGRAW-HILL /INTERAMERICANA EDITORES, S.A. DE C.V. ISBN 970-10-5629-9. 2006.

Romano J., Paús P., Bergamini J., Aldasoro R. (2017). Diseño de base para calibración de instrumentos MED. Trabajo presentado en: XXVIII Reunión Científica de la Asociación Argentina de Geofísicos y Geodestas y del Tercer Simposio sobre Inversión y Procesamiento de Señales en Exploración Sísmica (IPSES'17). La Plata, Bs. As . Recuperado de http://sedici.unlp.edu.ar/handle/10915/61011

R-project for statistical computing (2022). Consultado de https://www.r-project.org/

Published

2023-11-10

How to Cite

Romano, J., & Paús, P. (2023). Evaluation of a 5 pillars baseline for MED equipment calibration. Geoacta, 44(2), 36–56. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/15909

Issue

Section

Scientific work