Role of precipitation and evapotranspiration in aridity changes in Argentina

Authors

  • Pedro Samuel Blanco Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Moira Evelina Doyle Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Keywords:

exchanges, arid climate, seasonal variation

Abstract

The geal is to quantify the contribution of precipitation and evapotranspiration to changes in aridity in Argentina during the 1961-2020 period. Monthly data of mean temperature and precipitation from the CRU 4.06 database for continental Argentina were used. Potential evapotranspiration was calculated using mean temperature with Thornthwaite's method, to then estimate the aridity index (AI) as the ratio between precipitation (P) and potential evapotranspiration (PET). The equation by Feng and Fu (2013) was used to analyze the contributions of P and PET to the change in AI. In general, areas with an increase (decrease) in P coincide with those showing increases (decreases) in AI. However, PET intensifies the decrease or attenuates the increase in AI. On an annual level, more arid climatic conditions prevail in the country during the historical period, but this characteristic varies according to the season of the year due to the seasonal cycle of the variables.

Downloads

References

Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S., & Maltitz, G. V. (2018). World Atlas of Desertification. Publication Office of the European Union. https://doi.org/10.2760/06292

Doyle, M. E. (2020). Observed and simulated changes in precipitation seasonality in Argentina. International Journal of Climatology, 40(3), 1716–1737. https://doi.org/10.1002/joc.6297

Feng, S. & Fu, Q. (2013). Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13(19), 10081–10094. https://doi.org/10.5194/acp-13-10081-2013

Greve, P., Roderick, M. L., Ukkola, A. M., & Wada, Y. (2019). The aridity index under global warming. Environmental Research Letters, 14(12), 124006. https://doi.org/10.1088/1748-9326/ab5046

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 109. https://doi.org/10.1002/joc.3711

Intergovernmental Panel on Climate Change [IPCC] (2021). Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 3–32. Cambridge University Press. https://doi.org/10.1017/9781009157896.001

Nicholson, S. E. (2011). CBO9780511973840 Drylands Climatology. Cambridge University Press. https://doi.org/10.1017/

Prăvălie, R., Bandoc, G., Patriche, C., & Sternberg, T. (2019). Recent changes in global drylands: Evidences from two major aridity databases. Catena, 178, 209–231. https://doi.org/10.1016/j.catena.2019.03.016

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4), 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

Spinoni, J., Vogt, J., Naumann, G., Carrao, H., & Barbosa, P. (2015). Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index. International Journal of Climatology, 35(9), 2210–2222. https://doi.org/10.1002/joc.4124

Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. https://doi.org/10.2307/210739

Ullah, S., You, Q., Sachindra, D. A., Nowosad, M., Ullah, W., Bhatti, A. S., & Ali, A. (2022). Spatiotemporal changes in global aridity in terms of multiple aridity indices: An assessment based on the CRU data. Atmospheric Research, 268, 105998. https://doi.org/10.1016/j.atmosres.2021.105998

Zomer, R. J., Xu, J., & Trabucco, A. (2022). Version 3 of the global aridity index and potential evapotranspiration database. Scientific Data, 9(1), 409. https://doi.org/10.1038/s41597-022-01493-1

Published

2025-02-06

How to Cite

Blanco, P. S., & Doyle, M. E. (2025). Role of precipitation and evapotranspiration in aridity changes in Argentina. Geoacta, 46(1), 56–61. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/16888