Basculant blocks behavior of the megathrust from the vertical gravity gradient derived from the GOCE satellite

Authors

  • Orlando Álvarez Pontoriero Universidad Nacional de San Juan, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

Keywords:

GOCE satellite, megathrust earthquakes, rupture zones, vertical gravity gradient, co-seismic slip models

Abstract

The study of the seismogenic behavior of the megathrust, the region where the largest earthquakes occur on a global scale, has been approached from different methodologies. With the advent of satellite gravimetry it has been possible to obtain models of the static and dynamic Earth’s gravitational field which have allowed mapping mass heterogeneities that significantly govern seismogenic behavior, as well as recording changes in the distribution of densities at the lithospheric scale related to the seismic cycle. After the occurrence of three of the largest  ubduction earthquakes ever recorded, over the last ten years, we have studied the co-seismic behavior comparing slip models, degree of interseismic coupling, b-value and historical ruptures from direct models of the vertical gravity gradient. As a main result, we have been able to map both barriers to the propagation of seismic energy, generally associated with the subduction of high oceanic relief or forearc faults, as well as seismic asperities. In the latter is where the largest slip occurs along the fault plane when a seismic event takes place. As a general model we propose that the megathrust behaves like horst and grabben blocks where the latter produces the greatest coseismic displacement. During the interseismic period, these blocks subside, achieving a high degree of coupling with the subducting plate. On the contrary, horsts act as barriers or attenuators of seismic energy.

Downloads

References

Alvarez, O., Gimenez, M. E., & Folguera, A. (2022). Analysis of the coseismic slip behavior for the Mw=9.1 2011 Tohoku-Oki earthquake from satellite GOCE vertical gravity gradient. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1068435

Alvarez, O., Gimenez, M. E., Folguera, A., Chaves, C., & Braitenberg, C. (2019). Reviewing megathrust slip behavior for recent Mw>8.0 earthquakes along the Peru-Chilean margin from satellite GOCE gravity field derivatives. Tectonophysics, 769, 228188. https://doi.org/10.1016/j.tecto.2019.228188

Alvarez, O., Nacif, S., Gimenez, M., Folguera, A., & Braitenberg, C. (2014). GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics, 622, 198–215. https://doi.org/10.1016/j.tecto.2014.03.011

Alvarez, O., Pechuan Canet, S., Gimenez, M. E., & Folguera, A. (2021). Megathrust slip behavior for great earthquakes along the Sumatra-Andaman subduction zone mapped from satellite GOCE gravity field derivatives. Frontiers in Earth Sciences, Research Topic: Major to Great Earthquakes: Multidisciplinary Geophysical Analyses for Source Characterization. https://doi.org/10.3389/feart.2020.581396

Amante, C. & Eakins, B. W. (2009). ETOPO1, 1 arc-minute global relief model: Procedures, data sources and analysis. Reporte técnico, NOAA Technical Memorandum NESDIS NGDC-24. https://doi.org/10.7289/V5C8276M

Baba, K. & Yoshida, T. (2020). Geological structures controlled the rupture process of the 2011 m9.0 Tohoku-Oki earthquake in the Northeast Japan Arc. Earth Planets Space, 72(94). https://doi.org/10.1186/s40623-020-01212-3

Bletery, Q., Sladen, A., Delouis, B., Vallée, M., Nocquet, J.-M., Rolland, L., & Jiang, J. (2014). A detailed source model for the Mw 9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records. J. Geophys. Res. Solid Earth, 119(10), 7636–7653. https://doi.org/10.1002/2014JB011261

Bruinsma, S. L., Förste, C., Abrikosov, O., Lemoine, J.-M., Marty, J.-C., Mulet, S., Rio, M.-H., & Bonvalot, S. (2014). ESA’s satellite-only gravity field model via the direct approach based on All GOCE Data. Geophys. Res. Lett., 41, 7508–7514. https://doi.org/10.1002/2014GL062045

Chlieh, M., Avouac, J. P., Hjorleifsdottir, V., Song, T. R. A., Ji, C., Sieh, K., et al. (2007). Coseismic slip and afterslip of the great Mw 9.15 Sumatra-Andaman earthquake of 2004. Bull. Seismol. Soc. Am., 97(1A), S152–S173. https://doi.org/10.1785/0120050631

Grombein, T., Heck, B., & Seitz, K. (2013). Optimized formulas for the gravitational field of a tesseroid. J. Geod., 87, 645–600. https://doi.org/10.1007/s00190-013-0636-1

Janak, J. & Sprlak, M. (2006). New software for gravity field modelling using spherical harmonics. Geod. Cartog. Hor., 52, 1–8. https://archivnimapy.cuzk.cz/zemvest/cisla/Rok200601.pdf. (in Slovak). 681.306:550.312

Lay, T., Kanamori, H., Ammon, C., Koper, K., Hutko, A., Ye, L., Yue, H., & Rushing, T. (2012). Depth varying rupture properties of subduction zone megathrust faults. J. Geoph. Res., Solid Earth, 117, B04311. https://doi.org/10.1029/2011JB009133

Moreno, M., Melnick, D., Rosenau, M., Baez, J., Klotz, J., Oncken, O., & et al. (2012). Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet. Sci. Lett., 321–322, 152–165. https://doi.org/10.1016/j.epsl.2012.01.006

Métois, M., Vigny, C., & Socquet, A. (2016). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18°s). Pure Appl. Geophys., 173, 1431–1449. https://doi.org/10.1007/s00024-016-1280-5

Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W. D., Höck, E., Reguzzoni, M., Brockmann, J. M., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansò, F., & Tscherning, C. C. (2011). First GOCE gravity field models derived by three different approaches. J. Geod., 85, 819–843. https://doi.org/10.1007/s00190-011-0467-x

Rummel, R., Yi, W., & Stummer, C. (2011). GOCE gravitational gradiometry. J. Geodyn., 85(11), 777–790. https://doi.org/10.1007/s00190-011-0500-0

Tormann, T., Enescu, B., Woessner, J., & Wiemer, S. (2015). Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nat. Geosci., 8, 152–158. https://doi.org/10.1038/ngeo2343

Uieda, L., Barbosa, V., & Braitenberg, C. (2016). Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics, F41–F48. https://doi.org/10.1190/geo2015-0204.1

Wei, S., Graves, R., Helmberger, D., Avouac, J. P., & Jiang, J. (2012). Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth Planet. Sci. Lett., 333–334, 91–100. https://doi.org/10.1016/j.epsl.2012.04.006

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564. https://doi.org/10.1029/2019GC008515

Published

2025-02-06

How to Cite

Álvarez Pontoriero, O. (2025). Basculant blocks behavior of the megathrust from the vertical gravity gradient derived from the GOCE satellite. Geoacta, 46(1), 28–34. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/17034