Quasigeoid modelling through FFT methods and different types of gravity anomaly grids

Authors

  • Agustín R. Gómez Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Claudia N. Tocho Universidad Nacional de La Plata, Comisión de Investigaciones Científicas de la provincia de Buenos Aires, Argentina
  • Ezequiel D. Antokoletz Universidad Nacional de La Plata, Argentina

Keywords:

Quasigeoid modeling, Spherical FFT, 1D FFT, residual gravity anomaly gridding, Argentina

Abstract

One of the main strategies for the establishment of the International Height Reference Frame (IHRF) is based on determining high-precision quasigeoid models. The most widely used scheme for quasigeoid modelling is called remove-compute-restore (RCR). Among the multiple stages of RCR, the “compute” stage consists of an integration of the residual gravity anomalies. This integration can be done with FFT methods, which require that residual anomalies be arranged on a grid, which must be obtained from gravity data. Two methodologies for determining the regular grids and the spherical FFT and 1D FFT integration methods are discussed in this paper. In the first case, residual gravity grids were interpolated onto each node. The second grid was determined by interpolating the complete Bouguer anomalies. Afterwards, the gravimetric effect of the topography was computed and restored to obtain a free-air anomaly grid. Finally, the effects of a global geopotential model (GGM) and of residual terrain model (RTM) were removed from each node. Each grid was used as input in both integration methods separately, resulting in four quasigeoid models, which were validated against GNSS/Levelling data. The results show that models generated using the grid constructed with the second strategy are 1 cm more accurate than those constructed with the first strategy. At the same time, the differences between the models built with spherical FFT and 1D FFT are of the order of mm and, therefore, not significant.

Downloads

References

Antokoletz, E. D. (2017). Red Gravimétrica de Primer Orden de la República Argentina. http://sedici.unlp.edu.ar/handle/10915/60950. Facultad de Ciencias Astronómicas y Geofı́sicas, Universidad Nacional de La Plata.

Cimbaro, S., Laurı́a, E., & Piñón, D. (2009). Adopción del nuevo marco de referencia geodésico nacional. Reporte técnico, Instituto Geográfico Militar, Buenos Aires, Argentina. https://ramsac.ign.gob.ar/posgar07_pg_web/documentos/POSGAR_07_RAMSAC.pdf

Drewes, H., Kuglitsch, F. G., Adám, J., & Rózsa, S. (2016). The Geodesist’s Handbook 2016. Journal of Geodesy, 90(10), 907–1205. https://doi.org/10.1007/s00190-016-0948-z

Featherstone, W. E., Evans, J. D., & Olliver, J. G. (1998). A Meissl-modified Vanı́ček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. Journal of Geodesy, 72, 154–160. https://doi.org/10.1007/s001900050157

Featherstone, W. E. & Kirby, J. F. (2000). The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data. Geophysical Journal International, 141(1), 204–212. https://doi.org/10.1046/j.1365-246X.2000.00082.x

Forsberg, R. (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, volumen 5. Ohio State University, Department of Geodetic Science and Surveying.

Forsberg, R. & Sideris, M. G. (1993). Geoid computations by the multi-band spherical FFT approach. Manuscripta Geodaetica, 18, 82–82.

Forsberg, R. & Tscherning, C. C. (2008). An overview manual for the GRAVSOFT geodetic gravity field modelling programs. Reporte técnico, DTU Space. http://cct.gfy.ku.dk/publ_cct/cct19_36.pdf

Fotopoulos, G., Kotsakis, C., & Sideris, M. G. (2000). A new Canadian geoid model in support of levelling by GPS. Geomatica, 54(1), 53–62. https://doi.org/10.5623/geomat-2000-0006

Haagmans, R. E. (1993). Fast evaluation of convolution integrals on the sphere using 1d FFT, and a comparison with existing methods for Stokes’ integral. Manuscripta Geodaetica, 18, 227–241.

Heiskanen, W. A. & Moritz, H. (1967). Physical Geodesy. Bulletin Géodésique (1946-1975), 86(1), 491–492.

Hinze, W. J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., et al. (2005). New standards for reducing gravity data: The North American gravity database. Geophysics, 70(4), J25–J32. https://doi.org/10.1190/1.1988183

Hofmann-Wellenhof, B. & Moritz, H. (2006). Physical Geodesy. Springer Science & Business Media. https://doi.org/10.1007/978-3-211-33545-1

Ihde, J., Sánchez, L., Barzaghi, R., Drewes, H., Foerste, C., Gruber, T., et al. (2017). Definition and proposed realization of the International Height Reference System (IHRS). Surveys in Geophysics, 38, 549–570. https://doi.org/10.1007/s10712-017-9409-3

Instituto Geográfico Nacional (2016). Sistema de Referencia Vertical Nacional de la República Argentina. Reporte técnico, Buenos Aires, Argentina. https://ramsac.ign.gob.ar/posgar07_pg_web/documentos/Informe_Red_de_Nivelacion_de_la_Republica_Argentina.pdf

Instituto Geográfico Nacional (2021). Modelo Digital de Elevaciones de la República Argentina. Reporte técnico, Buenos Aires, Argentina. https://www.ign.gob.ar/archivos/Informe_MDE-Ar_v2.1_30m.pdf

Johnston, G., Riddell, A., & Hausler, G. (2017). The International GNSS Service. Springer Handbook of Global Navigation Satellite Systems, Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_33

Moritz, H. (1978). Least-squares collocation. Reviews of Geophysics, 16(3), 421–430. https://doi.org/10.1029/RG016i003p00421

Moritz, H. (1980). Advanced Physical Geodesy. Advances in Planetary Geology.

Moritz, H. (2000). Geodetic reference system 1980. Journal of Geodesy, 74(1), 128–133. https://doi.org/10.1007/BF02521480

Mäkinen, J. (2021). The permanent tide and the International Height Reference Frame (IHRF). Journal of Geodesy, 95(9), 106. https://doi.org/10.1007/s00190-021-01541-5

Piñón, D. (2016). Development of a precise gravimetric geoid model for Argentina. Universidad RMIT, Alemania. https://researchrepository.rmit.edu.au/view/pdfCoverPage?instCode=61RMIT_INST&filePid=13248372990001341&download=true. Tesis de doctorado

Sansò, F. & Sideris, M. G., editores (2013). Geoid Determination: Theory and Methods. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-74700-0

Schwarz, K. P., Sideris, M. G., & Forsberg, R. (1990). The use of FFT techniques in physical geodesy. Geophysical Journal International, 100(3), 485–514. https://doi.org/10.1111/j.1365-246X.1990.tb00701.x

Sánchez, L., Ågren, J., Huang, J., et al. (2021). Strategy for the realisation of the International Height Reference System (IHRS). Journal of Geodesy, 95, 33. https://doi.org/10.1007/s00190-021-01481-0

Tocho, C. & Vergos, G. S. (2015). Estimation of the Geopotential Value W 0 for the Local Vertical Datum of Argentina using EGM2008 and GPS/Levelling Data. IAG 150 Years, volumen 143 of International Association of Geodesy Symposia. Springer, Cham. https://doi.org/10.1007/1345_2015_32

Tocho, C. N., Antokoletz, E. D., Gómez, A. R., Guagni, H., & Piñon, D. A. (2022). Analysis of high-resolution global gravity field models for the estimation of International Height Reference System (IHRS) coordinates in Argentina. Journal of Geodetic Science, 12(1), 131–140. https://doi.org/10.1515/jogs-2022-0139.

van Hees, G. S. (1991). Stokes formula using Fast Fourier Techniques. Determination of the Geoid, volumen 106 of International Association of Geodesy Symposia. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3104-2_47

Wong, L. & Gore, R. (1969). Accuracy of geoid heights from modified Stokes kernels. Geophysical Journal International, 18(1), 81–91. https://doi.org/10.1111/j.1365-246X.1969.tb00264.x

Yildiz, H., Forsberg, R., Ågren, J., Tscherning, C., & Sjöberg, L. (2012). Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. Journal of Geodetic Science, 53–64. https://doi.org/10.2478/v10156-011-0024-9

Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94, 1–12. https://doi.org/10.1007/s00190-020-01398-0

Published

2024-12-09

How to Cite

Gómez, A. R., Tocho, C. N., & Antokoletz, E. D. (2024). Quasigeoid modelling through FFT methods and different types of gravity anomaly grids. Geoacta, 45(1), 17–37. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/17138

Issue

Section

Scientific work