Bioformulación de Trichoderma harzianum en sustrato sólido y efectos de su aplicación sobre plantas de pimiento

Autores/as

  • Araceli Natalia Bader
  • Graciela Lidia Salerno
  • Fernanda Covacevich
  • Fabiana Consolo

DOI:

https://doi.org/10.24215/16699513e037

Palabras clave:

biofertilizante, trichoderma, PGPM

Resumen

Para la implementación de biofertilizantes se pretende que su formulación sea económica, de fácil aplicación y
que garantice la eficacia del inóculo. Nuestro objetivo fue seleccionar un sustrato para vehiculizar Trichoderma
harzianum Rifai y evaluar su efecto sobre plantas de pimiento (Capsicum annum L.). El desarrollo de biomasa
fúngica y esporulación se evaluó sobre 4 soportes orgánicos: arroz, salvado de trigo, turba, salvado de
trigo+turba (1:1 v/v), que fueron inoculados separadamente con T. harzianum (1mL 1 x 108 conidios/1.250 cm3;
incubados a 25°C). La mezcla de salvado de trigo+turba evidenció la mayor colonización fúngica y esporulación
a los 5 días posteriores a la inoculación (DPI). La mejor conservación de la viabilidad de conidios del
bioformulado se mantuvo entre 4 y 25ºC durante 15 días, mientras que a 35 y 40ºC la viabilidad se redujo
significativamente (80%). La mayor formación de clamidosporas se observó a 4°C (76% a 35 DPI), con una
reducción del 40-50% a 25 y 35°C. Cuatro cepas fueron bioformuladas en el soporte salvado de trigo+turba y
todas incrementaron el crecimiento vegetal en plántulas de pimiento a 45 DPI. La cepa FCC T 16 incrementó, en
más del 100% el desarrollo aéreo y la capacidad fotosintética. Las cepas FCCT 199-2 y FCCT 363-2
favorecieron preferentemente el desarrollo radical. Se sugiere como vehículo promisorio y económico, la
formulación de cepas de Trichoderma en el soporte salvado de trigo+turba, cuya actividad y propiedades pueden
ser mantenidas mediante la formación de clamidosporas en un rango de temperaturas y tiempo de conservación
de uso común entre los productores hortícolas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Adlercreutz, E.G., R.D. Huarte, A. López Camelo, E. Manzo, A. Szczesny & L. Viglianchino. 2014. Producción hortícola bajo cubierta. Ed. Ediciones INTA, Buenos Aires. 190 pp.

Amer, G.A. & R.S. Utkhede. 2000. Development of formulations of biological agents for management of root rot of lettuce and cucumber. Canadian Journal of Microbiology 46: 809-816.

Annone, J.G. 2005. El desafío del manejo integrado de enfermedades de los cultivos en sistemas agrícolas conservacionistas: El caso de la sanidad del trigo en siembra directa. XIII Congreso Latinoamericano de Fitopatología, Villa Carlos Paz, Argentina. pp. 19-22.

Antoun, H. & D. Prévost. 2005. Ecology of Plant Growth Promoting Rhizobacteria. En: PGPR: Biocontrol and Biofertilization. Siddiqui Z.A. (Ed.), Springer, Dordrecht. pp: 1-38.

Aquino Martínez, J.G., B.G. Reyes-Reyes & L.M. Vázquez-García. 2008. Biocontrol in vitro e in vivo de Fusarium oxysporum con hongos antagonistas nativos de la zona florícola de Villa Guerrero, Estado de México. Revista Mexicana de Fitopatología 26: 127- 137.

Arora, N.K. & J. Mishra. 2016. Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Applied Soil Ecology 107: 405- 407.

Bader, A.N., F. Covacevich, G.L. Salerno & V.F. Consolo. 2019. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University-Science. https://doi.org/10.1016/j.jksus.2019.04.002.In press.

Bharathi, R., S. Harish, A. Ramanathan, M.R. Samiyappan & R. Vivekananthan. 2004. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Protection 23: 835-843.

Cotxarrera, L., C. Alabouvette, C. Steinberg & M.I. Trillas-Gay. 2002. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry 34: 467-476.

Covacevich, F., H.E. Echeverria & L.A.N. Aguirrezabal. 2007. Soil available phosphorus status determines indigenous mycorrhizal colonization into field and glasshouse-grown spring wheat in Argentina. Applied Soil Ecology 35: 1–9.

Damiri, N., M. Mulawarman & M. Mutiara. 2014. Effect of temperature and storage on effectiveness of Trichoderma viride as biocontrol agents of Rigidoporus microporus, pathogen of white root on rubber. Agrivita 36: 169-173.

FAO. 2019. Effects of intensive fertilizer use on the human environment. Disponible en: http://www.fao.org/3/aq378e/aq378e.pdf. Último acceso: 24 de Julio 2019.

Fravel, D.R. 2005. Commercialization and Implementation of Biocontrol. Annual Review of Phytopathology 43: 337-359.

Gravel, V., H. Antoun & R.J. Tweddell. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology Biochemistry 39: 1968-1977.

Jagtap, G.P. & S.S. Bhatnagar. 2000. Trichoderma chlamydospores-based formulation (Tricoguard™): impact on shelf life. Pestology 24: 70–71.

Johnson, S.N., C.M. Benefer, A. Frew., B.S. Griffithsc, S.E. Hartleyd, A.J. Karleye, S. Rasmannf, M. Schumanng, I. Sonnemannh & C.A.M. Roberti. 2016. New frontiers in belowground ecology for plant protection from root-feeding insects. Applied Soil Ecology 108: 96-107.

Kumar, G., A. Maharshi, J. Patel, A. Mukherjee, H.B. Singh & B.K. Sarma. 2017 Trichoderma: A Potential Fungal Antagonist to Control Plant Diseases. SATSA Mukhapatra - Annual Technical Issue 21: 206-218.

Martínez, L.B. & F.I. Pugnaire. 2009. Interacciones entre las comunidades de hongos formadores de micorrizas arbusculares y de plantas. Algunos ejemplos en los ecosistemas semiáridos. Ecosistemas 18: 44-54.

Michel-Aceves A.C., R. Ariza-Flores, A. Barrios- Ayala, M.A. Otero-Sánchez, A. Rebolledo-Martínez & L.Y. Solano-Pascacio. 2009. Biocontrol in vitro con Trichoderma spp. de Fusarium subglutinans (Wollenweb & Reinking) Nelson, Toussoun y Marasas y F. oxysporum Schlecht., Agentes Causales de la "Escoba de Bruja" del Mango (Mangifera indica L.). Revista Mexicana de Fitopatología 27: 18-26.

Mishra, D.S., C.R. Prajapati, A.K. Gupta & S.D. Sharma. 2012. Relative bio-efficacy and shelf-life of mycelial fragments, conidia and chlamydospores of Trichoderma harzianum. Vegetos 25: 225–232.

Okon-Levy, N., Y. Elad, Z.M. Haile, E. Jurkevitch, J. Katan, Y. Meller Harel & E. Rav‐David. 2015. Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathology 64: 365-374.

Osman, M.B., A. Abdulhamid, N. Mohammad & M.W.Y. Wan. 2010. Comparison of different delivery system of Trichoderma and Bacillus as biofertilizer. Advances in Environmental Biology 4: 31-33.

Papavizas, G. 1985. Trichoderma and Gliocladium: biology, ecology and potential for biocontrol. Annual Review Phytopatology 23: 23-54.

Prasad, R. D., C.P. Anuroop, S.V. Hegde & R. Rangeshwaran. 2002. Effect of soil and seed application of Trichoderma harzianum on pigeon pea wilt caused by Fusarium udum under field conditions. Crop Protection 21: 293-297.

Rodríguez-Lacherre, M. & R. Veneros-Terrones. 2011. Biological control of Trichoderma harzianum RIFAI on fungal pathogens of fruits postharvest of Carica papaya from distribution areas of District of Trujillo (Perú). Revista de la Facultad de Ciencias Biológicas Universidad Nacional de Trujillo 31: 2.

Sarro Baro, Á., C.F. Castillo & J.M. Lara. 2011. Evaluación in vitro de la capacidad antagonista de Trichoderma lignorum FEEP TL0601 frente a Fusarium oxysporum f. sp. lycopersici. Phytoma España: La revista profesional de sanidad vegetal 225: 47-50.

SENASA. 2019a. Situación de la Producción Orgánica en la Argentina durante el año 2018. Servicio Nacional de Sanidad y Calidad Agroalimentaria. Buenos Aires, marzo 2019. Disponible en: https://www.argentina.gob.ar/sites/default/files/situacion _de_la_po_en_la_argentina_2018.pdf. Último acceso: 24 de Julio 2019.

SENASA. 2019b. Lista de productos registrados por SENASA hasta enero 2019. Disponible en: https://www.argentina.gob.ar/files/formuladoswebene20 19xls. Último acceso: 24 de Julio 2019.

Sharon, E., M. Bar-Eyal, I. Chet, A.B. Maghodia, M. Mor, Y. Oka & Y. Spiegel. 2009. TrichoNema: a Trichoderma-Based Project to Develop a Commercial Bio-Agent Product against Phyto-Nematodes. VII International Symposium on Chemical and Non-Chemical Soil and Substrate Disinfestation 883. pp. 223-227.

Singh, B. 2018. Review: Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy 48: 21-39.

Tuão Gava, C.A. & J.M. Pinto. 2016. Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biological Control 97:13-20.

Verma, M., S.K Brar, R.D. Tyagi, R.Y. Surampalli & J.R. Valéro. 2007. Antagonistic fungi Trichoderma spp: Panoply of biological control. Biochemical Engineering Journal 37: 1-20.

Wang, M., J. Chen, L. Fan, K. Fu, J. Gao, Y. Li, J. Ma & C. Yu. 2015. Biological control of southern corn leaf blight by Trichoderma atroviride SG3403. Biocontrol Science and Technology 25: 1133-1146.

Woo, S.L., M. Lorito, M. Ruocco & F. Scala. 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96: 181-185.

Descargas

Publicado

2020-07-10

Cómo citar

Bader, A. N., Salerno, G. L. ., Covacevich, F. ., & Consolo, F. (2020). Bioformulación de Trichoderma harzianum en sustrato sólido y efectos de su aplicación sobre plantas de pimiento. Revista De La Facultad De Agronomía, 119(1), 037. https://doi.org/10.24215/16699513e037