Influencia del método de deshidratación sobre la calidad de snacks de zapallito redondo [Cucurbita maxima var. Zapallito (Carr.) Millán)]

Autores/as

  • Juan Facundo Massolo
  • Cristian Ortiz
  • Analia Concellon
  • Ariel Vicente

DOI:

https://doi.org/10.24215/16699513e045

Palabras clave:

hortalizas, deshidratacion osmotica, antioxidantes, carotenoides

Resumen

El creciente interés por los snacks de vegetales no amiláceos, preparados sin fritura se explica por su menor
densidad calórica, respecto a la papa deshidratada y frita. Los métodos convencionales de secado a alta
temperatura en ciertos casos pueden provocar pérdidas de componentes bioactivos. Es por ello que existe
interés en la búsqueda de nuevos métodos de procesamiento que reduzcan el desperdicio de estos productos. En este trabajo, se evaluó la calidad (antioxidantes fenólicos, carotenoides, azúcares, acidez, color, aceptabilidad sensorial e higroscopicidad) de snacks de zapallito redondo obtenidos por dos métodos diferentes: 1) secado con aire caliente (SAC) o 2) por un método combinado de deshidratación osmótica (DO) con NaCl seguido de una etapa de secado por aire caliente (DO+SAC). Dependiendo de la concentración de NaCl empleada, la etapa de DO permitió reducir la humedad inicial del vegetal en 15-30%. La incorporación de un pre-tratamiento de DO antes del secado por aire caliente no afectó la acidez, azúcares ni contenido de compuestos fenólicos del producto final. Los snacks obtenidos por el método combinado DO+SAC, mostraron mejor color y aceptabilidad sensorial, mayor nivel de carotenoides extraíbles y menor higroscopicidad que los producidos por SAC. Los resultados del presente trabajo muestran que los tratamientos combinados de DO y aire caliente, resultan en snacks de zapallito redondo con mejores propiedades físicas (color, higroscopicidad), nutricionales (carotenoides) y sensoriales (aceptabilidad) que aquellos obtenidos sólo por secado convencional con aire caliente.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Ainsworth, P. & A. Plunkett. 2007. Reducing salt in snack products. En: Reducing Salt in Foods. Kilcast D. & F. Angus (Eds.), Woodhead Publishing, Cambridge, Sawston. pp. 296-315.

AOAC (Association of Official Analytical Chemists) Methods. 2000. En: Official Methods of Analysis, 17th ed. Association of Official Analytical Chemists, Washington, DC.

Britton, G. & J.R. Helliwell. 2008. Carotenoid-protein interactions. En: Carotenoids. Ed. Britton G., Liaaen- Jensen S., Pfander H. Basel: Birkhauser Verlag. pp. 99- 118.

Chavan, U.D. 2012. Osmotic dehydration process for preservation of fruits and vegetables. Journal of Food Research 1: 202-209.

Dewanto, V., X. Wu, K.K. Adom & R.H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural Food Chemistry 50: 3010−3014.

Doymaz, I. 2007. The kinetics of forced convective airdrying of pumpkin slices. Journal of Food Engineering 79: 243–248.

García, E. & D.M. Barrett. 2002. Preservative treatments for fresh-cut fruits and vegetables. In: Freshcut fruits and vegetables: Science, Technology, and Market. Lamikanra, O. (Ed.). CRC Press. pp. 274-311.

Hawkes, C. 2013. Promoting healthy diets through nutrition education and changes in the food environment: an international review of actions and their effectiveness. Background paper for the international conference on nutrition (ICN2). pp. 78.

Huang, L. & M. Zang. 2012. Trends in development of dried vegetable products as snacks. Drying Technology 30: 448-461.

Instituto Nacional de Tecnología Agropecuaria (INTA). 2015. Atlas de consumo de alimentos. Instituto de Economía del INTA (IE).

Kowalska, H., K. Czajkowska, J. Cichowska & A. Lenart. 2017. What's new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology 67: 150-159.

Lombard, G.E., J.C. Oliveira, P. Fito & A. Andrés. 2008. Osmotic dehydration of pineapple as a pretreatment for further drying. Journal of Food Engineering 85: 277–284.

Majerska, J., A. Michalska & A. Figiel. 2019. A review of new directions in managing fruit and vegetable processing by-products. Trends in Food Science & chnology, 88: 2017–219.

Mayor, L., J. Pissarra & A.M. Sereno. 2008. Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering 85: 326-339.

Mitchell, H. 2016. Developing food products for consumers with low sodium/salt requirements. En: Developing food products for consumers with specific dietary needs. Osborn, S. & W. Morley (Eds.), Woodhead Publishing, Sawston, Cambridge. pp. 81- 105.

Mujumdar, A.S. (Ed.). 2007. Handbook of Industrial Drying, 3ra edición. Chemical Rubber Company (CRC) Press, Boca Raton, Florida, EEUU.

Nieto, A.B., D.M. Salvatori, M.A. Castro & S.M. Alzamora. 2004. Structural changes in apple tissue during glucose and sucrose osmotic dehydration: shrinkage, porosity, density and microscopic features. Journal of Food Engineering 61: 269–278.

Onwude, D.T., H. Hashima & G. Chenc. 2016. Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology 57: 132-145.

Onwude, D.T., H. Hashim, R. Janius, K. Abdan, G. Chen & A.O. Oladejo. 2017. Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food Science & Emerging Technologies 43: 223-238.

Pan, Y.K., L.J. Zhao, Y. Zhang, G. Chen & A.S. Mujumdar, 2003. Osmotic dehydration pretreatment in drying of fruits and vegetables. Drying Technology 21: 1101–1114.

Pankaj, S.K. & M.K. Keener. 2017. A review and research trends in alternate frying technologies. Current Opinion in Food Science 16: 74-79.

Pizzocaro, F., D. Torreggiani & G. Gilardi. 1993. Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. Journal of Food Processing and Preservation 17: 21-30.

Prabuthas, P., P.P. Srivastav & H.N. Mishra. 2009. Optimization of pigment extraction from Spirulina platensis var. Ionor biomass. Seaweed Research and Utilization 31: 117-125.

Rastogi, N.K. & K. Niranjan. 1998. Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. Journal of Food Science 63: 508- 511.

Reis, R.C., V.C. Castro, I.A. Devilla, C.A. Oliveira, L.S. Barbosa & R. Rodovalho. 2013. Effect of drying temperature on the nutritional and antioxidant qualities of cumari peppers from Pará (Capsicum chinense Jacqui). Brazilian Journal of Chemical Engineering 30:337-343.

Revaskar, V.A., P.S. Pisalkar, P.B. Pathare & GP. Sharma. 2014. Dehydration kinetics of onion slices in osmotic and air convective drying process. Research in Agricultural Engineering 60: 92–99.

Sablani, S.S. 2006. Drying of fruits and vegetables: Retention of nutritional/functional quality. Drying Technology 24: 428-432.

Singleton, V.L., R. Orthofer & R.M. Lamuela- Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152-178.

Tiwari, R.B. 2005. Application of osmo-air dehydration for processing of tropical fruits in rural areas. Indian Food Industry Journal 24: 62–69.

Torreggiani, D. & G. Bertolo. 2004. Present and future in process control and optimization of osmotic dehydration. From unit operation to innovative combined process: An overview. Advances in Food Nutrition Research 48: 174–225.

Torres, C.A., L.A. Romero & R.I. Diaz. 2015. Quality and sensory attributes of apple and quince leathers made without preservatives and with enhanced antioxidant activity. LWT - Food Science and Technology 62: 996-1003.

Troncoso, E. & F. Pedreschi 2007. Modeling of textural changes during drying of potato slices. Journal of Food Engineering 82: 577–584.

Wang, J., J.S. Wang & Y. Yu. 2007. Microwave drying characteristics and dried quality of pumpkin. International Journal of Food Science & Technology 42: 148–156.

Yadav, A.K. & V.S. Satya. 2012. Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology 51: 1654-1673.

Zaro, M.J., L.C. Ortiz, S. Keunchkarian, A.R. Chaves, A.R. Vicente & A. Concellon. 2015. Chlorogenic acid retention in white and purple eggplant after processing and cooking. LWT-Food Science and Technology 64: 802-808.

Descargas

Publicado

2020-07-10

Cómo citar

Massolo, J. F., Ortiz, C., Concellon, A., & Vicente, A. (2020). Influencia del método de deshidratación sobre la calidad de snacks de zapallito redondo [Cucurbita maxima var. Zapallito (Carr.) Millán)]. Revista De La Facultad De Agronomía, 119(1), 045. https://doi.org/10.24215/16699513e045