Cultivo in vitro de Peltophorum dubium (Spreng.) Taub y Enterolobium contortisiliquum (Vell.) Morong
DOI:
https://doi.org/10.24215/16699513e103Palabras clave:
micropropagación, leguminosas, organogénesis, embriogénesis, propagaciónResumen
Las especies Peltophorum dubium (Spreng.) (Caña fístula) y Enterolobium contortosiliquum (Vell.) Morong (Timbó), nativas del bosque atlántico interior, son de interés para la foresto-industria de la región. El desarrollo de un protocolo de propagación in vitro para ambas especies es necesario para contar con herramientas para un programa de conservación ex situ. El objetivo del presente trabajo fue determinar el medio nutritivo, concentración y tipo de reguladores de crecimiento vegetal, y tipo de explantes necesarios para la proliferación in vitro de brotes axilares, adventicios y embriones somáticos de P. dubium y E. contortisiliquum. El 100% de los explantos obtenidos de plántulas germinadas in vitro de P. dubium formaron brotes axilares, con una producción promedio de dos brotes por explante a partir de segmentos nodales cultivados en MS½+0,1 mg/l BAP. El 65% de estos brotes formaron raíces cuando fueron subcultivados a medio MS½, libre de RCV. Se reporta además en P. dubium, la formación de brotes adventicios y la inducción de embriones somáticos, que alcanzaron estadio acorazonado a partir de segmentos apicales, inducidos en MS½ suplementados con 2,4-D y BAP y diferenciados en MS½ en presencia de BAP. Por otro lado, también por primera vez, se obtuvo en E. contortisiliquum, la producción de brotes axilares a partir de segmentos nodales cultivados en MS+0,1 mg/l BAP en un 100% de los explantos y la producción de brotes adventicios (con un máximo de 6 brotes/explanto), a partir de segmentos apicales, inter-cotiledonares y nodales, cultivados en medio MS suplementados con BAP y ANA
Descargas
Métricas
Citas
Ahmad A. & M. Anis (2019). Meta-topolin improves in vitro morphogenesis, rhizogenesis and biochemical analysis in Pterocarpus marsupium Roxb.: a potential drug-yielding tree. Journal of Plant Growth Regulation 38(3): 1007-1016.
Akinropo, M.S.; B.E. Ayisire & E.R. Ogbimi (2020). In vitro callus and shoot regeneration in Enterolobium cyclocarpum (Jacq.) Grised. a fast timber yielding species. Notulae Scientia Biologicae 12(1): 74-89.
Akram, M. & F. Aftab (2015). Effect of cytokinins on in vitro seed germination and changes in chlorophyll and soluble protein contents of teak (Tectona grandis L.). Biochem Physiol 4: 166.
Andreolla, T.L. (2019). Rizogênese in vitro e aclimatização de plantas micropropagadas de Peltophorum dubium (Sprengel) Taubert. M. Sc. Tesis. Santa Catarina, Brasil. UFSM. 62 pp.
Asif, M.J.; C. Mak & R.Y. Othman (2001). In vitro zygotic embryo culture of wild Musa acuminata ssp. malaccensis and factors affecting germination and seedling growth. Plant Cell, Tissue and Organ Culture 67(3): 267-270.
Bassan, J.S.; L.R. Reiniger; B.H. Rocha; C.R. Severo & A.V. Flôres (2006). Oxidação fenólica, tipo de explanto e meios de cultura no estabelecimento in vitro de canafístula (Peltophorum dubium (Spreng.) Taub.). Ciência Florestal 16: 381-390.
Beck, S.L.; R. Dunlop & J. Van Staden (1998a). Micropropagation of Acacia mearnsii from ex vitro material. Plant growth regulation 26(3): 143-148.
Beck, S.L.; R. Dunlop & J. Van Staden (1998b). Rejuvenation and micropropagation of adult Acacia mearnsii using coppice material. Plant Growth Regulation 26(3): 149-153.
Boeri, P., & S. Sharry (2018). Somatic embryogenesis of alpataco (Prosopis alpataco L.). In: Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants Springer, Cham. pp. 189-198.
Bon, M.C.; D. Bonal; D.K. Goh & O. Monteuuis (1998). Influence of different macronutrient solutions and growth regulators on micropropagation of juvenile shape Acacia mangium and shape Paraserianthes falcataria explants. Plant cell, Tissue and Organ Culture 53(3): 171-177.
Candido, D.F. (2013). Cultivo in vitro de Peltophorum dubium (Sprengel) Taubert: multiplicação, senescência foliar e calogênese. M. Sc. Tesis. Santa Catarina, Brasil. UFSM. 120 pp.
Cerdas, L.V. & L.A. Guzmán (2004). In vitro organogenesis in Dalbergia retusa (Papilonaceae). Revista de biologia tropical 52(1): 41-46.
Curti, A.R. (2011). Contribuições para a Micropropagação de Peltophorum dubium (SPRENGEL) Taubert. M. Sc. Tesis. Santa Catarina, Brasil. UFSM. 94 pp.
Curti, A.R. (2014). Rizogênese in vitro e ex vitro em Peltophorum dubium (Sprengel) Taubert. PhD. Tesis doctoral, Universidad Federal de Santa Maria, Brasil. UFSM. 133 pp.
Curti, A.R. & L.R. Reiniger (2014). In vitro rhizogenesis in Peltophorum dubium the effect of different culture media/Formacao in vitro de raizes em canafistula: o efeito de diferentes meios de cultivo. Ciência Rural 44(2): 314-321.
Dayanandan, S.; J. Dole; K.S. Bawa & R. Kesseli (1999). Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Molecular Ecology 8(10): 1585-1592.
Di Rienzo J.A.; F. Casanoves; M.G. Balzarini; L. Gonzalez; M. Tablada; C.W. Robledo (2020). InfoStat, Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Disponible en: http://www.infostat.com.ar Último acceso: junio 2022
Farooq, S.A. & T.T. Farooq (2003). Rapid clonal propagation of Tamarindus indica L. using explants from adult trees. Pakistan Journal of Biological Sciences 6(18): 1591-1592.
Flôres, A.V.; L. Reiniger; A. Curti; A. Paim; J. Bassan & A. Cunha (2011). Estabelecimento in vitro de Peltophorum dubium ((Spreng.) Taub.) em função das concentrações do meio MS. Cerne 17: 549-553.
Fruet, S.F.T. (2018). Comportamento de duas espécies florestais arbóreas cultivadas in vitro e in vivo em função do cobre. M. Sc. Tesis. Santa Catarina, Brasil. UFSM. 51 pp.
Gantait, S.; S. Kundu & P.K. Das (2018). Acacia: An exclusive survey on in vitro propagation. Journal of the Saudi Society of Agricultural Sciences 17(2): 163-177.
Global Strategy for Plant Conservation. GSPC (2020). A strategy for plant conservation as part of the Post 2020 Global Biodiversity Framework. Disponible en https://www.plants2020.net Último acceso: julio 2022
Gomes, C.S. (2017). Qualidade de sementes e rizogênese in vitro em Peltophorum dubium (Sprengel) Taubert. M. Sc. Tesis. Santa Catarina, Brasil. UFSM. 60 pp.
Goyal, P.; S. Kachhwaha & S.L. Kothari (2012). Micropropagation of Pithecellobium dulce (Roxb.) Benth—a multipurpose leguminous tree and assessment of genetic fidelity of micropropagated plants using molecular markers. Physiology and Molecular Biology of Plants 18(2): 169-176.
Guo, W.; Y. Li; L. Gong; Y. Dong & B. Liu (2006). Efficient micropropagation of Robinia ambigua var. idahoensis (Idaho Locust) and detection of genomic variation by ISSR markers. Plant Cell, Tissue and Organ Culture 84(3): 343-351.
Hira, A., & P. Bijaya (2019). In vitro seed germination and seedling growth of the orchid Dendrobium primulinum Lindl. African Journal of Plant Science 13(12): 324-331.
Ho, W.J.; Y.K. Huang; W. Huang; Y.C. Huang & J.P. Chung (2022). Effective in vitro culture using dormant bud of nodal sections from a mature Acacia tree. In Vitro Cellular & Developmental Biology-Plant 58(3): 437-446.
Hong, Y. & S. Bahtnagar (2007). Tropical Tree Legumes II. 4. In: Biotechnology in Agriculture and Forestry, Vol. 60, Transgenic Crops V. E.C. Pua & M.R. Davey, Ed. Springer-Verlag Berlin Heidelberg. pp 407-431.
Husain, M.K.; M. Anis & A. Shahzad (2007). In vitro propagation of Indian Kino (Pterocarpus marsupium Roxb.) using thidiazuron. In Vitro Cellular & Developmental Biology-Plant 43(1): 59-64.
Kaur, K. & U. Kant (2000). Clonal propagation of Acacia catechu Willd. by shoot tip culture. Plant growth regulation 31(3): 143-145.
Marinucci, L.; M. Ruscitti & W. Abedini (2004). Morfogénesis in vitro de leguminosas forestales nativas de la República Argentina. Revista de la Facultad de Agronomía 105 (2): 27-36.
Mori, E.; A. Sebbenn; E. Tambarussi & R. Gurie (2013). Sistema de reprodução em populações naturais de Peltophorum dubium. Sci For, Piracicaba 41(99): 307-317
Murashige, T. & F. Skoog (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum 15: 473-497.
Murawski, D.A. & J.L. Hamrick (1991). The effect of the density of flowering individuals on the mating systems on nine tropical tree species. Heredity 67(2): 167-164.
Murawski, D.A.; I.N. Gunatilleke & K.S. Bawa (1994). The effects of selective logging on inbreeding in Shorea megistophylla (Dipterocarpaceae) from Sri Lanka. Conservation Biology 8(4): 997-1002.
Niella, F.; P. Rocha; A.M. Tuzinkievicz; R. Buchweis; C. Bulman Hartkopf; P. Thalmayr; J. Gonzalez; F. Montagnini & S. Sharry (2022). Contribution to the Domestication and Conservation of the Genetic Diversity of Two Native Multipurpose Species in the Yabotí Biosphere Reserve, Misiones, Argentina. In Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments. Springer, Cham. pp. 461-483.
Nikolić, R.; N. Mitić; R. Miletić & M. Nešković (2006). Effects of cytokinins on in vitro seed germination and early seedling morphogenesis in Lotus corniculatus L. Journal of plant growth Regulation 25(3): 187-194.
O'Neill, G.A.; I. Dawson; C. Sotelo-Montes; L. Guarino; M. Guariguata; D. Current & J.C. Weber (2001). Strategies for genetic conservation of trees in the Peruvian Amazon. Biodiversity & Conservation 10(6): 837-850.
Rathore, J.S.; M.K. Rai & N.S. Shekhawat (2012). Induction of somatic embryogenesis in gum arabic tree [Acacia senegal (L.) Willd.]. Physiology and Molecular Biology of Plants 18(4): 387-392.
Reiniger, L.R.; A.R. Curti; D.P. Golle; A.F. Paim & M.F.B. Muniz (2016). In vitro rhizogenesis and acclimatization of Peltophorum dubium shoots: effect of adding agar to a WPM/2 medium with vermiculite. Scientia Forestalis (111): 691-700.
Rezende, R.; F.A. Rodrigues; V.D. Ramos; A.D. Martins; M. Pasqual; R.A Braga Júnior & J. Dória (2022). Trypsin inhibitor in Enterolobium contortisiliquum calli grown in the presence of plant growth regulators. Pesquisa Agropecuária Brasileira 57.
Rodrigues, F.A.; V. Cavalcanti; J. Dória & M. Pasqual (2022). Curva de crescimento de calos de Enterolobium contortisiliquum induzidos in vitro. Research, Society and Development 11(1).
Sahagún, A.R.; O. Hernández & G. Hernández (2007). In vitro propagation of Enterolobium cyclocarpum (guanacaste) from nodal explants of axenic seedlings. e-Gnosis (5): 1.
Thirunavoukkarasu, M.; S. Parida; S. Rath & A. Behera (2007). Micropropagation of Enterolobium cyclocarpum (Jacq.) Griseb. Journal of Sustainable Forestry 23(4): 1-12.
Thomas E.; R. Jalonen; J. Loo; D. Boshier; L Gallo; S. Cavers; S. Bordacs; P. Smith & M. Bozzano (2014). Genetic considerations in ecosystem restoration using native tree species. Forest Ecology and Management 333: 66-75.
Uddin, M.S.; K. Nasirujjaman; S. Zaman & M.A. Reza (2005). Regeneration of multiple shoots from different explants viz. Shoot tip, Nodal segment and Cotyledonary node of in vitro grown seedlings of Peltophorum pterocarpum (DC.) Backer ex K. Heyne. Biotechnology 4(1): 35-38.
Zobel, B. & J. Talbert (1992). Técnicas de mejoramiento genético de árboles forestales. Noriega eds. México – España – Venezuela – Colombia. 545 pp.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Fernando Niella, Patricia Rocha, Sandra Sharry
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
A partir de 2019 (Vol. 118 número 2) los artículos se publicarán en la revista bajo una licencia Creative Commons Atribución- NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.
Previo a esta fecha los artículos se publicaron en la revista bajo una licencia Creative Commons Atribución (CC BY)
En ambos casos, la aceptación de los originales por parte de la revista implica la cesión no exclusiva de los derechos patrimoniales de los/as autores/as en favor del editor, quien permite la reutilización, luego de su edición (posprint), bajo la licencia que corresponda según la edición.
Tal cesión supone, por un lado, que luego de su edición (posprint) en Revista de la Facultad de Agronomía las/os autoras/es pueden publicar su trabajo en cualquier idioma, medio y formato (en tales casos, se solicita que se consigne que el material fue publicado originalmente en esta revista); por otro, la autorización de los/as autores/as para que el trabajo sea cosechado por SEDICI, el repositorio institucional de la Universidad Nacional de La Plata, y sea difundido en las bases de datos que el equipo editorial considere adecuadas para incrementar la visibilidad de la publicación y de sus autores/as.
Asimismo, la revista incentiva a las/os autoras/es para que luego de su publicación en Revista de la Facultad de Agronomía depositen sus producciones en otros repositorios institucionales y temáticos, bajo el principio de que ofrecer a la sociedad la producción científica y académica sin restricciones contribuye a un mayor intercambio del conocimiento global.