Efecto de diferentes espectros e intensidades luminosas de lámparas LED en el crecimiento y desarrollo de plántulas de tomate
DOI:
https://doi.org/10.24215/16699513e147Palabras clave:
iluminación artificial, intensidad lumínica, espectro de radiación, producción de plantines, Solanum lycopersicum L.Resumen
La calidad de las plántulas en especies hortícolas influye luego del trasplante en el rendimiento y calidad de los cultivos. La luz artificial generada por diodos emisores de luz, permite producir plántulas fuera de temporada y en sistemas de granjas verticales. La composición del espectro de radiación y la intensidad proporcionada, son factores determinantes durante el ciclo de producción. En el presente trabajo, se evaluó el efecto de tres composiciones lumínicas obtenidas por variación de las proporciones de longitudes de onda (rojo, azul, verde, violeta y rojo lejano); y tres niveles de intensidad de luz (240, 160, 90 µmol.m-2.s-1), en el crecimiento y calidad de plántulas de tomate, entre agosto y septiembre de 2021 en un módulo de cultivo sin luz externa ubicado en Luján de Cuyo, Mendoza. La biomasa de las plántulas no se diferenció frente a los distintos espectros evaluados, mientras que la intensidad lumínica más elevada generó un mayor rendimiento en peso fresco y seco total. La biomasa de raíces mostro una tendencia decreciente al disminuir la intensidad lumínica y se obtuvo mayor altura de plántulas en los tratamientos con 240 y 90 µmol.m-2.s-1. Se verificó un incremento del Índice Relativo de Clorofila en los tratamientos con mayor proporción de luz azul, mientras que las intensidades de 240 y 160 µmol.m-2.s-1, generaron los valores significativamente superiores. Este estudio establece una base para futuras investigaciones enfocadas en la optimización del recurso lumínico en la producción de plántulas.
Descargas
Métricas
Citas
Abidi, F., Girault, T., Douillet, O., Guillemain, G., Sintès, G., Laffaire, M., Ben Ahmed, H., Smiti S., Huché-Thélier, L. y Leduc, N. (2013). Blue light effects on rose photosynthesis and photomorphogenesis. Plant Biology, 15(1), 67-74 https://doi.org/10.1111/j.1438-8677.2012.00603.x
Argenta, G., Silva, P. R. F. D., Bortolini, C. G., Forsthofer, E. L. y Strieder, M. L. (2001). Relação da leitura do clorofilômetro com os teores de clorofila extraível e de nitrogênio na folha de milho. Revista Brasileira de Fisiologia Vegetal, 13(2), 158-167. https://doi.org/10.1590/S0103-31312001000200005
Brown, C. S., Schuerger, A. C. y Sager, J. C. (1995). Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science, 120(5), 808-813. https://doi.org/10.21273/JASHS.120.5.808
Fan, X. X., Xu, Z. G., Liu, X. Y., Tang, C. M., Wang, L. W. y Han, X. L. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturae, 153, 50-55. https://doi.org/10.1016/j.scienta.2013.01.017
Fukuda, N., Fujita, M., Ohta, Y., Sase, S., Nishimura, S. y Ezura, H. (2008). Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Scientia Horticulturae, 115(2), 176-182. https://doi.org/10.1016/j.scienta.2007.08.006
Hernández, R. y Kubota, C. (2012). Tomato seedling growth and morphological responses to supplemental LED lighting red: blue ratios under varied daily solar light integrals. Acta Horticulturae, 956,187-194. https://doi.org/10.17660/ActaHortic.2012.956.19
Hernández, R. y Kubota, C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66-74. https://doi.org/10.1016/j.envexpbot.2015.04.001
Hernández, R., Eguchi, T., Deveci, M. y Kubota, C. (2016). Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Scientia Horticulturae, 213, 270-280. https://doi.org/10.1016/j.scienta.2016.11.005
Hogewoning, S. W., Douwstra, P., Trouwborst, G., Van Ieperen, W. y Harbinson, J. (2010). An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. Journal of Experimental Botany, 61(5), 1267-1276. https://doi.org/10.1093/jxb/erq005
Kaiser, E., Weerheim, K., Schipper, R. y Dieleman, J. A. (2019). Partial replacement of red and blue by green light increases biomass and yield in tomato. Scientia Horticulturae, 249, 271-279. https://doi.org/10.1016/j.scienta.2019.02.005
Kelly, N., Choe, D., Meng, Q. y Runkle, E. S. (2020). Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Scientia Horticulturae, 272, 109565. https://doi.org/10.1016/j.scienta.2020.109565
Mendoza-Paredes, J. E., Castillo-González, A. M., Avitia-García, E., García-Mateos, M. R. y Valdéz-Aguilar, L. A. (2021). Efecto de diferentes proporciones de luz LED azul:roja en plantas de chile habanero (Capsicum chinense Jacq.). Biotecnia, 23(1), 110-119. https://doi.org/10.18633/biotecnia.v23i1.1288
Moreno-Jiménez, A. M., Loza-Cornejo, S. y Ortiz-Morales, M. (2017). Efecto de luz LED sobre semillas de Capsicum annuum L. var. serrano. Biotecnología Vegetal, 17(3), 145-151.
Nanya, K., Ishigami, Y., Hikosaka, S. y Goto, E. (2012). Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Horticulturae, 956, 261-266. https://doi.org/10.17660/ActaHortic.2012.956.29
Naznin, M. T., Lefsrud, M., Gravel, V. y Azad, M. O. K. (2019). Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants, 8(4), 93. https://doi.org/10.3390/plants8040093
Park, Y. y Runkle, E. S. (2018). Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation. PLoS One, 13(8): e0202386. https://doi.org/10.1371/journal.pone.0202386
Paucek, I., Pennisi, G., Pistillo, A., Appolloni, E., Crepaldi, A., Calegari, B., Spinelli, F., Cellini, A., Gabarrell, X., Orsini, F. y Gianquinto, G. (2020). Supplementary LED interlighting improves yield and precocity of greenhouse tomatoes in the Mediterranean. Agronomy, 10(7), 1002. https://doi.org/10.3390/agronomy10071002
Pérez, D. A. y Morales-Fonseca, D. (2021). Granjas verticales como modelo de negocios verdes y sostenibles. Revista de Investigación, 14(1), 29–45. https://doi.org/10.29097/2011639X.342
Runkle, E. S. y Heins, R. D. (2001). Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. Journal of the American Society for Horticultural Science, 126(3), 275-282. https://doi.org/10.21273/JASHS.126.3.275
Schuerger, A. C., Brown, C. S. y Stryjewski, E. C. (1997). Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Annals of Botany, 79(3), 273-282. https://doi.org/10.1006/anbo.1996.0341
Smith, H. (1982). Light quality, photoperception, and plant strategy. Annual Review of Plant Physiology, 33(1), 481-518. https://doi.org/10.1146/annurev.pp.33.060182.002405
Steinger, T., Roy, B. A. y Stanton, M. L. (2003). Evolution in stressful environments II: adaptive value and costs of plasticity in response to low light in Sinapis arvensis. Journal of Evolutionary Biology, 16(2), 313-323. https://doi.org/10.1046/j.1420-9101.2003.00518.x
Urrestarazu, M., Nájera, C. y del Mar Gea, M. (2016). Effect of the spectral quality and intensity of light-emitting diodes on several horticultural crops. HortScience, 51(3), 268-271. https://doi.org/10.21273/HORTSCI.51.3.268
Van Ieperen, W. (2012). Plant morphological and developmental responses to light quality in a horticultural context. Acta Horticulturae, 956, 131-139. https://doi.org/10.17660/ActaHortic.2012.956.12
Vargas, C. G. (2014). Light-emitting diodes as an alternative supplemental lighting source for greenhouse tomato propagation and production [Tesis doctoral no publicada]. Purdue University.
Wei, H., Hu, J., Liu, C., Wang, M., Zhao, J., Kang, D. I. y Jeong, B. R. (2018). Effect of supplementary light source on quality of grafted tomato seedlings and expression of two photosynthetic genes. Agronomy, 8(10), 207. https://doi.org/10.3390/agronomy8100207
Weston, E., Thorogood, K., Vinti, G. y López-Juez, E. (2000). Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta, 211(6), 807-815. https://doi.org/10.1007/s004250000392
Wollaeger, H. M. y Runkle, E. S. (2014). Growth of Impatiens, Petunia, Salvia, and tomato seedlings under blue, green, and red light-emitting diodes. HortScience, 49(6), 734-740. https://doi.org/10.21273/HORTSCI.49.6.734
Yeh, N. y Chung, J. P. (2009) High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, 13(8), 2175-2180. https://doi.org/10.1016/j.rser.2009.01.027
Zavala, J. A. y Ravetta, D. A. (2001). Allocation of photoassimilates to biomass, resin and carbohydrates in Grindelia chiloensis as affected by light intensity. Field Crops Research, 69(2), 143-149. https://doi.org/10.1016/S0378-4290(00)00136-2
Zheng, L., He, H. y Song, W. (2019). Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. HortScience, 54(10), 1656-1661. https://doi.org/10.21273/HORTSCI14109-19
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Germán Darío Aguado, Mariano Iván Funes Pinter, Federico Sebastián De Biazi, Gabriel Enrique Pisi, Ernesto Martín Uliarte

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
A partir de 2019 (Vol. 118 número 2) los artículos se publicarán en la revista bajo una licencia Creative Commons Atribución- NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.
Previo a esta fecha los artículos se publicaron en la revista bajo una licencia Creative Commons Atribución (CC BY)
En ambos casos, la aceptación de los originales por parte de la revista implica la cesión no exclusiva de los derechos patrimoniales de los/as autores/as en favor del editor, quien permite la reutilización, luego de su edición (posprint), bajo la licencia que corresponda según la edición.
Tal cesión supone, por un lado, que luego de su edición (posprint) en Revista de la Facultad de Agronomía las/os autoras/es pueden publicar su trabajo en cualquier idioma, medio y formato (en tales casos, se solicita que se consigne que el material fue publicado originalmente en esta revista); por otro, la autorización de los/as autores/as para que el trabajo sea cosechado por SEDICI, el repositorio institucional de la Universidad Nacional de La Plata, y sea difundido en las bases de datos que el equipo editorial considere adecuadas para incrementar la visibilidad de la publicación y de sus autores/as.
Asimismo, la revista incentiva a las/os autoras/es para que luego de su publicación en Revista de la Facultad de Agronomía depositen sus producciones en otros repositorios institucionales y temáticos, bajo el principio de que ofrecer a la sociedad la producción científica y académica sin restricciones contribuye a un mayor intercambio del conocimiento global.