Síntesis de heterociclos mediante reacciones multicomponente, empleando heteropolicompuestos como catalizadores
Palabras clave:
Química Verde, Heteropolicompuestos, Síntesis Orgánica, Reacciones multicomponente, HeterociclosResumen
La química fina tradicionalmente ha empleado “tecnologías estequiométricas”, las cuales involucran la generación de cantidades enormes de residuos inorgánicos. Dada la necesidad de minimizar el uso de tecnologías contaminantes, hoy en día se hace uso de una serie de estrategias que intentan reducir el impacto ambiental. Una de las propuestas incluye la utilización de las llamadas “reacciones multicomponente” (MCRs), las cuales son reacciones convergentes en las que tres o más materiales de partida reaccionan para formar un producto, donde básicamente todos o la mayoría de los átomos contribuyen al nuevo producto formado.
Por otra parte, también se ha logrado minimizar la generación de residuos al incluir el uso de materiales catalíticos reciclables y reutilizables, capaces de sustituir los ácidos minerales empleados comúnmente en cantidades estequiométricas. En este sentido, los heteropolicompuestos resultan ser catalizadores atractivos, ya que cumplen con las condiciones anteriores, y que una misma estructura posee multifuncionalidad intrínseca: son ácidos fuertes y pueden tener alta capacidad oxidante. Es posible realizar el diseño del catalizador a escala atómica/molecular, basándose en las propiedades acídicas y redox buscadas, por medio de una selección adecuada de los constituyentes.
En este trabajo se presentan diversos avances recientes que involucran el uso de reacciones multicomponente en la síntesis de compuestos orgánicos, empleando catálisis por heteropolicompuestos. Los heterociclos preparados corresponden a las familias de 1,4-dihidropiridinas, dihidropirimidinonas, imidazoles, quinazolinonas, xantenonas y piridinas.
Descargas
Citas
T. Deligeorgiev, N. Gadjev, A. Vasilev, S. Kaloyanova, J. J. Vaquero, J. Alvarez-Builla. “Green Chemistry in Organic Synthesis”. Mini-Rev. Org. Chem., 7, 2010, 44-53.
P. T. Anastas, J. Warner. “Green Chemistry: Theory and Practice”, Oxford University Press: Oxford, 1988.
W. Wardencki, J. Curylo, J. Namiesnic. “Green chemistry – current and future”. Pol. J. Environ. Stud., 14(4), 2005, 389-395.
V. K. Ahluwalia, M. Kidwai. “New Trends in Green Chemistry”, Kluwer Academic Publishers: Dordrecht, 2004.
S. L. Jain, J. K. Joseph, S. Singhal, B. Sain. “Metallophthalocyanines (MPcs) as efficient heterogeneous catalysts for Biginelli condensation: Application and comparison in catalytic activity of different MPcs for one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones”. J. Mol. Catal. A: Chem., 268, 2007, 134-138.
F. L. Zumpe, M. Flüß, K. Schmitz, A. Lender. “Propane phosphonic acid anhydride: a new promoter for the one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones”. Tetrahedron Lett., 48, 2007, 1421-1423.
A. Kamal, T. Krishnaji, M. A. Azhar. “Copper(II) tetrafluoroborate as a mild and efficient catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions”. Catal. Commun., 8, 2007, 1929-1933.
A. S. Trifilenkov, A. P. Ilyin, V. M. Kysil, Y. B. Sandulenko, A. V. Ivachtchenko. “One-pot tandem complexity-generating reaction based on Ugi four component condensation and intramolecular cyclization”. Tetrahedron Lett., 48, 2007, 2563-2567.
V. G. Nenajdenko, A. L. Reznichenko, E. S. Balenkova. “Diastereoselective Ugi reaction without chiral amines: the synthesis of chiral pyrroloketopiperazines”. Tetrahedron, 63, 2007, 3031-3041.
Z. Xiang, T. Luo, K. Lu, J. Cui, X. Shi, R. Fathi, J. Chen, Z. Yang. “Concise Synthesis of Isoquinoline via the Ugi and Heck Reactions”. Org. Lett., 6, 2004, 3155-3158.
P. R. Krishna, G. Dayaker, P. V. Narasimha Reddy. “Diastereoselective Passerini reactions using p-toluenesulfonylmethyl isocyanide (TosMIC) as the isonitrile component”. Tetrahedron Lett., 47, 2006, 5977-5980.
C. K. Z. Andrade, S. C. S. Takada, P. A. Z. Suarez, M. B. Alves. “Revisiting the Passerini Reaction under Eco-Friendly Reaction Conditions”. Synlett., 10, 2006, 1539-1542.
N. Azizi, L. Torkiyan, M. R. Saidi. “Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly Acids”. Org. Lett., 8, 2006, 2079-2082.
R. Wang, B. Li, T. Huang, L. Shi, X. Lu. “NbCl5-Catalyzed one-pot Mannich-type reaction: three component synthesis of β-amino carbonyl compounds”. Tetrahedron Lett., 48, 2007, 2071-2073.
H. Wu, Y. Shen, L. Fan, Y. Wan, P. Zhang, C. Chen, W. Wang. “Stereoselective synthesis of β-amino ketones via direct Mannich-type reaction catalyzed with silica sulfuric acid”. Tetrahedron, 63, 2007, 2404-2408.
G. H. Henry. “De novo synthesis of substituted pyridines”. Tetrahedron, 60, 2004, 6043-6061.
A. H. Li, S. Moro, N. Forsyth, N. Melman, X. Ji, K. A. Jacobson. “Synthesis, oMFA Analysis, and Receptor Docking of 3,5-Diacyl-2,4-Dialkylpyridine Derivatives as Selective A3 Adenosine Receptor Antagonists”. J. Med. Chem., 42, 1999, 706-721.
F. R. Buhler, W. J. Kiowski. “Calcium antagonists in Hypertension”. J. Hypertens. Suppl., 5 (Supplement 3), 1987, S3-10.
J. L. Reid, P. A. Meredith, F. Pasanisi. “Clinical pharmacological aspects of calcium antagonists and their therapeutic role in Hypertension”. J. Cardiovasc. Pharmacol., 7 (Supplement 4), 1985, S18-20.
T. Godfraid, R. Miller, M. Wibo. “Calcium antagonism and calcium entry blockade”. Pharmacol. Rev., 38, 1986, 321-416.
A. Sausins, G. Duburs. “Synthesis of 1,4-dihydropyridines by cyclocondensation reactions”. Heterocycles, 27(1), 1988, 269-289.
R. Mannhold, B. Jablonka, W. Voigdt, K. Schoenafinger, K. Schravan. “Calcium- and calmodulin-antagonism of enladipine derivatives: comparative SAR”. Eur. J. Med. Chem., 27, 1992, 229-235.
B. Love, M. Goodman, K. Snader, R. Tedechi, E. Macko. “Hantzsch-type dihydropyridine hypotensive agents”. J.Med. Chem., 17, 1974, 956-965.
F. Bossert, H. Meyer, E. Wehinger. “4-Aryldihydropyridines, a New Class of Highly Active Calcium Antagonists”. Angew. Chem. Int. Ed. Engl., 20, 1981, 762-769.
J. G. Breitenbucher, G. Figliozzi. “Solid-phase synthesis of 4-aryl-1,4-dihydropyridines via the Hantzsch three component condensation”. Tetrahedron. Lett., 41, 2000, 4311-4315.
S. Bahekar, D. Shinde. “Synthesis and anti-inflammatory activity of 1,4-dihydropyridines”. Acta Pharm. (Zagreb), 52, 2002, 281-287.
G. A. Wachter, M. C. Davis, A. R. Martin, S. C. Franzblau. “Antimycobacterial activity of substituted isosteres of Pyridine and Pyrazinecarboxylic acids”. J. Med. Chem., 41, 1998, 2436-2438.
S. Gullapalli, P. Ramarao. “L-type Ca2+ channel modulation by dihydropyridines potentiates κ-opioid receptor agonist induced acute analgesia and inhibits development of tolerance in rats”. Neuropharmacology, 42, 2002, 467-475.
L. M. Sanchez, A. G. Sathicq, G. T. Baronetti, H. J. Thomas, G. P. Romanelli. “Vanadium-Substituted Wells-Dawson Heteropolyacid as Catalyst for Liquid Phase Oxidation of 1,4-Dihydropyridine Derivative”. Catal. Lett., 2013, DOI 10.1007/s10562-013-1111-6.
A. G. Sathicq, G. P. Romanelli, A. Ponzinibbio, G. T. Baronetti, H. J. Thomas. “An Efficient One-Step Hantzsch Multicomponent Synthesis of 1,4-Dihydropyridines Via a Wells-Dawson Heteropolyacid Catalyst Under Solvent-Free Conditions”. Lett. Org. Chem., 7, 2010, 511-518.
C. O. Kappe. “Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog”. Acc. Chem. Res., 33, 2000, 879-888.
C. O. Kappe. “100 years of the Biginelli dihydropyrimidine synthesis”. Tetrahedron, 49, 1993, 6937-6963.
C. O. Kappe. “Biologically active dihydropyrimidones of the Biginelli-type-a literature survey”. Eur. J. Med. Chem., 35, 2000, 1043-1052.
K. S. Atwal, B. N. Swanson, S. E. Unger, D. M. Floyed, S. Moreland, A. Hedberg, A. O’Reilly. “Dihydropyrimidine calcium channel blockers. 3. 3- Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents”. J. Med. Chem., 34, 1991, 806-811.
M. M. Heravi, F. Derikvand, F. F. Bamoharram. “A catalytic method for synthesis of Biginelli-type 3,4-dihydropyrimidin-2 (1H)-one using 12-tungstophosphoric acid”. J. Mol. Catal. A: Chem., 242, 2005, 173–175.
E. Rafiee, H. Jafari. “A practical and green approach towards synthesis of dihydropyrimidinones: Using heteropoly acids as efficient catalysts”. Bioorg. Med. Chem. Lett., 16, 2006, 2463–2466.
A. Gharibi, M. Jahangir, M. Roshani, J. W. Scheeren, S. Moghadaszadeh, A. Rezaee. “Catalytic Synthesis of 3,4-dihydropyrimidin-2(1H)-ones under Green Conditions and by Keggin type Heteropolyacid catalyst H7[PMo8V4O40]”. Gazi Univ. J. Sci, 25(4), 2012, 823-833.
H. Khabazzadeh, K. Saidi, H. Sheibani. “Highly efficient conversion of aromatic acylals to 3, 4-dihydropyrimidinones: a new protocol for the Biginelli reaction”. ARKIVOC, (xv), 2008, 34-41.
M. M. Amini, A. Shaabani, A. Bazgir. “Tangstophosphoric acid (H3PW12O40): An efficient and eco-friendly catalyst for the one-pot synthesis of dihydropyrimidin-2(1H)-ones”. Catal. Comm., 7, 2006, 843–847.
G. P. Romanelli, A. G. Sathicq, J. C. Autino, G. Baronetti, H. J. Thomas. “Solvent-Free approach to 3,4-Dihydropyrimidin-2(1H)-(thio)ones: Biginelli Reaction Catalyzed by a Wells–Dawson Reusable Heteropolyacid”. Synthetic Commun., 37, 2007, 3907–3916.
O. D´Alessandro, G. Sathicq, V. Palermo, L. M. Sanchez, H. Thomas, P. Vázquez, T. Constantieux, G. Romanelli. “Doped Keggin heteropolyacids as catalyst in the solvent-free, multicomponent synthesis of substituted 3,4-dihydropyrimidin-2-(1H)-ones”. Curr. Org. Chem., 16 (23), 2012, 2763-2769.
R. Fazaeli, S. Tangestaninejad, H. Aliyan, M. Moghadam. “One-pot synthesis of dihydropyrimidinones using facile and reusable polyoxometalate catalysts for the Biginelli reaction”. Applied Catal. A: Gen., 309, 2006, 44–51.
S. L. Abrahams, R. J. Hazen, A. G. Batson, A. P. Phillips. “Trifenagrel: a chemically novel platelet aggregation inhibitor”. J. Pharmacol. Exp. Ther., 249(2), 1989, 359-365.
J. W. Black, G. J. Durant, J. C. Emmett, C. R. Ganellin.
“Sulphur-methylene isosterism in the development of metiamide, a new histamine H2-receptor antagonist”. Nature, 248, 1974, 65-67.
A. Wauquier, W. A. E. Van Den Broeck, J. L. Verheyen, P. A. J. Janssen. “Electroencephalographic study of the short-acting hypnotics etomidate and methohexital in dogs”. Eur. J. Pharmacol., 47, 1978, 367-377.
Y. Tanigawara, N. Aoyama, T. Kita, K. Shirakawa, F. Komada, M. Kasuga, K. Okumura. “CYP2C19 genotype–related efficacy of omeprazole for the treatment of infection caused by Helicobacter pylori”. Clin Pharmacol Ther., 66 (5), 1999, 528-534.
W. Hunkeler, H. Mohler, L. Pieri, P. Polc, E. P. Bonetti, R. Cumin, R. Schaffner, W.
Haefely. “Selective antagonists of benzodiazepines”. Nature, 290, 1981, 514-516.
M. M. Heravi, F. Derikvand, F. F. Bamoharram. “Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts”. J. Mol. Catal. A: Chem., 263, 2007, 112–114.
N. M. Kalkhorani, M. M. Heravi. “K7Na3P2W18Cu4O68: A Mild, Efficient, and Reusable Catalyst for the One-Pot Synthesis of 1,2,4,5-Tetra Substituted Imidazoles”. J. Chem., Volume 2013, 2013, Article ID 645801, 5 pages.
A. Javid, M. M. Heravi, F. F. Bamoharram, M. Nikpour. “One-Pot Synthesis of Tetrasubstituted Imidazoles Catalyzed by Preyssler-Type Heteropoly Acid”. e-J. Chem., 8(2), 2011, 547-552.
M. F. Pereira, R. Chevrot, E. Rosenfeld, V. Thiery, T. Besson. “Synthesis and evaluation of the antimicrobial activity of novel quinazolinones”. J. Enzym. Inhib. Med. Chem., 22, 2007, 577-583.
I. K. Kacker, S. H. Zaheer. “Potential analgesics.1. Synthesis of substituted 4-quinazolinones”. J. Indian Chem. Soc., 28, 1951, 344-346.
B.V. Brumas, M. M. L. Fiallo, G. Berthon. “Copper(II) interactions with non-steroidal anti-inflammatory reagents”. J. Inorg. Biochem., 100, 2006, 362-373.
S. Tamaoki, Y. Yamauchi, Y. Nakano, S. Sakano, A. Asagarasu, M. Sato. “Pharmacological properties of 3-amino-5,6,7,8-tetrahydro-2-{4-[4-(quinolin-2-yl) piperazin-1-yl]butyl}quinazolin-4(3H)-one (TZB-30878), a novel therapeutic agent for diarrhea-predominant irritable bowel syndrome (IBS) and its effects on an experimental IBS model”. J. Pharm. Exp. Ther., 322, 2007, 1315-1323.
W. M. Welch, F. E. Ewing, J. Huang, F. S. Menniti, M. J. Pagnozzi, K. Kelly, P. A. Seymour, V. Guanowsky, S. Guhan, M. R. Guinn, D. Critchett, J. Lazzaro, A. H. Ganong, K. M. DeVries, T. L. Staigers, B. L. Chenard. “Atropisomeric quinazolin-4-one derivatives are potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists”. Bioorg. Med. Chem. Lett., 11, 2001, 177-181.
M. Saleh, Y. Hafez, F. Abdel-Hay, G. Gad. “Synthesis and biological activities of some new 3H-quinazolin-4-one derivatives derived from 3-phenylamino-2-thioxo-3H-quinazolin-4-one”. Phosphorus, Sulfur Silicon Relat. Elem., 179, 2004, 411-426.
K. Ighilahriz, B. Boutemeur, F. Chami, C. Rabia, M. Hamdi, S. M. Hamdi. “A Microwave-Assisted and Heteropolyacids-Catalysed Cyclocondensation Reaction for the Synthesis of 4(3H)-Quinazolinones”. Molecules, 13, 2008, 779-789.
S. M. Menchen, S. C. Benson, J. Y. L. Lam, W. Zhen, D. Sun, B. B. Rosenblum, S. H. Khan, M. Taing. “Sulfonated diarylrhodamine dyes”. US Patent 6583168, June 24, 2003.
A. K. Bhattachary, K. C. Rana. “Microwave-assisted synthesis of 14-aryl-14H-dibenzo[a.j]xanthenes catalysed by methanesulfonic acid under solvent-free conditions”. Mendeleev Commun., 17, 2007, 247-248.
R. M. Ion, D. Frackowiak, A. Planner, K. Wiktorowicz. “The Incorporation Of Various Porphyrins Into Blood Cells Measuredvia Flow Cytometry, Absorption And Emission Spectroscopy”. Acta Biochim. Pol., 45, 1998, 833-845.
Z. Karimi-Jaberi, M. M. Hashemi. “One step synthesis of 14-alkyl- or aryl-14H-dibenzo[a,j]xanthenes using sodium hydrogen sulfate as catalyst”. Monatsh. Chem., 139, 2008, 605-608.
M. Seyyedhamzeh, M. Mirzaei, A. Bazgir. “Solvent-free synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst”. Dyes Pigm., 76, 2008, 836-839.
A. Hassankhani, E. Mosaddegh, S. Y. Ebrahimipour. “H4SiW12O40 Catalyzed One-Pot Synthesis of 12-Aryl-8,9,10,12-tetrahydrobenzo[a] Xanthen-11-ones Under Solvent-Free Conditions”. e-J. Chem., 9(2), 2012, 786-790.
M. M. Heravi, H. Alinejhad, K. Bakhtiari, M. Saeedi, H. A. Oskooie, F. F. Bamoharram. “Solvent-Free Synthesis Of Xanthene Derivatives By Preyssler Type Heteropolyacid”. Bull. Chem. Soc. Ethiop., 25(3), 2011, 399-406.
R. H. Bocker, F. P. Guengerich. “Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450”. J. Med. Chem., 29, 1986, 1596-1603.
S. Kudo, H. Okumura, G. Miyamoto, T. Ishizaki. “Cytochrome P-450 Isoforms Involved in Carboxylic Acid Ester Cleavage of Hantzsch Pyridine Ester of Pranidipine”. Drug. Metab. Dispos., 27, 1999, 303-308.
B. Vacher, B. Bonnaud, P. Funes, N. Jubault, W. Koek, M. B. Assie, C. Cosi, M. Kleven. “Novel Derivatives of 2-Pyridinemethylamine as Selective, Potent, and Orally Active Agonists at 5-HT1A Receptors”. J. Med. Chem., 42, 1999, 1648-1660.
W. B. Choi, I. N. Houpis, H. R. O. Churchill, A. Molina, J. E. Lynch, R. P. Volante, P. J. Reider, A. O. King. “A practical synthesis of the 5-chloromethyl-furo[2,3-b]pyridine pharmacophore”. Tetrahedron Lett., 36, 1995, 4571-4574.
V. N. Kozhevnikov, D. N. Kozhevnikov, T. V. Nikitina, V. L. Rusinov, O. N. Chupakhin, M. Zabel, B. König. “A Versatile Strategy for the Synthesis of Functionalized 2,2‘-Bi- and 2,2‘:6‘,2‘ ‘-Terpyridines via Their 1,2,4-Triazine Analogues”. J. Org. Chem., 68, 2003, 2882-2888.
M. M. Heravi, K. Bakhtiari, Z. Daroogheha, F. F. Bamoharram. “An efficient synthesis of 2,4,6-triarylpyridines catalyzed by heteropolyacid under solvent-free conditions”. Catal. Commun., 8, 2007, 1991–1994.
L. M. Sanchez, A. G. Sathicq, J. L. Jios, G. T. Baronetti, H. J: Thomas, G. P. Romanelli. “Solvent-free synthesis of functionalized pyridine derivatives using Wells-Dawson heteropolyacid as catalyst”. Tetrahedron Lett., 52, 2011, 4412–4416.