QUÍMICA VERDE: UN NUEVO ENFOQUE AMBIENTAL PARA LA SINTESIS DE ISOQUINOLINAS Y SUS DERIVADOS

  • Jadileyg Gabriela León Facultad de Ciencias Básicas. Escuela de Ciencias Químicas. Universidad Pedagógica y Tecnológica de Colombia. Avenida Central del Norte 39-115, 150003. Tunja. Boyacá. Colombia

Resumen

La química verde se enfoca en procesos que están asociados con la prevención de la contaminación ambiental mediante el diseño de nuevas metodologías para la síntesis de productos químicos que no sean perjudiciales para el medio ambiente. Como producto de esta metodología ambiental, se proponen nuevas rutas sintéticas de compuestos heterocíclicos, para isoquinolinas y sus derivados, obteniéndose procesos que minimicen el consumo de energía, la producción de residuos o el uso de materiales corrosivos, explosivos, volátiles y no biodegradables. En el presente trabajo, se estudian nuevas vías de síntesis de isoquinolinas y sus derivados utilizando catalizadores y compuestos orgánicos, como mecanismos para la obtención de estos heterociclos.

Citas

[1] H. Rodríguez, M. Suárez, O. Reyes, O. Martín, E. Ochoa. “Síntesis no convencionales de heterociclos nitrogenados con potenciales propiedades bioactivas”. Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de La Habana. Biotecnología Aplicada. Vol. 24. 2007.

[2] C. Barthelemy, M. Conargo, S. Esteban. Química Heterocíclica. Universidad Nacional de Educación a Distancia. Madrid. 2015, 460-500.

[3]Proyecto Ciencía. “Introducción a la Química Heterocíclica”.

[4] C. Barthelemy, M. Conargo, S. Esteban. “Química Heterocíclica”. Universidad Nacional de Educación a Distancia. Madrid. 2015, 460-500.

[5] S. Pandeya, A. Tyagi. “Synthetic approaches for quinoline and isoquinoline S.N”. Department of Pharmaceutical Chemistry, S.I.T.M, LKO, India. International Journal of Pharmacy and Pharmaceutical Sciences. Vol. 3. 2011.

[6] M. Sainbur. “Heterocyclic Chemistry”. The Royal Society of Chemistry. 2001.

[7] J. Guy, W. Jackson. “Isoquinoline and the isoquinoline-reds”. J. Chem. Soc., Trans. Vol. 121. 1922, 1029–1033.

[8] J. Toda, A. Sonobe, T. Ichikawa, T. Saitoh, Y. Horiguchi, T. Sano. “Synthesis of 4-aryl-2-methyl-1,2,3,4-tetrahydroisoquinolines via Pummerer-type cyclization of N-(arylmethyl)-N-methyl-2-aryl-2-(phenylsulfinyl) acetamides”. Arkivoc. 2000, 165–180.

[9] E. Awuah, A. Caprett. “Strategies and synthetic methods directed toward the preparation of libraries of substituted isoquinolines”. J. Org. Chem. Vol. 75. 2010, 5627–5634.

[10] N. Philippe, F. Denivet, J. Vasse, J. Sopkova-de Olivera, V. Levacher, G. Dupas. “Highly stereoselective Friedel-Crafts type cyclization. Facile access to enantiopure 1,4-dihydro-4-phenyl isoquinolinones”. Tetrahedron. Vol. 59. 2003, 8049–8056.

[11] A. Couture, E. Deniau, S. Lebrun, P. Grandclaudon, P. “Total syntheses of (±)-cherylline and (±)-latifine”. J. Chem. Soc. Perkin Trans. Vol. 1. 1999, 789–794.

[12] E. Larghi, M. Amongero, A. Bracca, T. Kaufman, T. “The intermolecular Pictet-Spengler condensation with chiral carbonyl derivatives in the stereoselective syntheses of optically-active isoquinoline and indole alkaloids”. Arkivoc. 2005, 98–153.

[13] A. Corma, H. García, H. “Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis”. Molecules. Vol.15. 2010, 2070-2078.

[14] B. Thomas, S. Prathapan, S. Sugunan. “Effect of pore size on the catalytic activities of K-10 clay and H-zeolites for the acetalizatiion of ketones with methanol”. Applied Catalysis A: General. Vol. 277. 2004, 247-252.

[15] “Encyclopedia of Chemical Technology”. Wiley, New York, 4th ed., 1992, 827–838.

[16] G. Heitmann, G. Dahlhoff, J. Niederer, W.F. Hölderich. “Active sites of a [B]-ZSM-5 zeolite catalyst for the Beckmann rearrangement of cyclohexanone oxime to caprolactam”. Journal of Catalysis. Vol. 194. 2000, 122-129.

[17] T. Takahashi, M. Nishi, Y. Tagawa, T. Kai. “Catalyst deactivation of high-silica HZSM-5 in the Beckmann rearrangement reaction of cyclohexanone oxime”. Microporous Materials. Vol. 3. 1995, 467-471.

[18] B. Thomas, U. Prabhub, S. Prathapana, S. Sugunana. “Towards a green synthesis of isoquinoline: Beckmann rearrangement of E,E-cinnamaldoxime over H-zeolites”. Microporous and Mesoporous Materials. Vol.102. 2007, 138–150.

[19] B. Thomas, S. Prathapan, S. Sugunan. “Beckmann rearrangement of E,E-cinnamaldoxime on rare earth exchanged (Ce3+, La3+, and RE3+) HFAU-Y zeolites: An efficient green process for the synthesis of isoquinoline”. Microporous and Mesoporous Materials. Vol. 84. 2005, 137–143.

[20] A. Pictet, T. Spengler, Berichte. Vol. 44. 1911, 2030–2036

[21] P. Laszlo. “Chemical reactions on clays”. Science. Vol. 235. 1987, 1473-1477

[22] A. Hegedüs, Z. Hell. “One-step preparation of 1-substituted tetrahydroisoquinolines via the Pictet–Spengler reaction using zeolite catalysts”. Tetrahedron Letters. Vol. 45. 2004, 8553–8555.

[23] A. Saito, M. Takayama, A. Yamazaki, J. Numaguchi, Y. Hanzawa. “Synthesis of tetrahydroisoquinolines and isochromans via Pictet–Spengler reactions catalyzed by Bronsted acid–surfactant-combined catalyst in aqueous media”. Tetrahedron. Vol. 63. 2007, 4039–4047.

[24] R. Pingaew, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul. “Tungstophosphoric acid catalyzed synthesis of N-sulfonyl-1,2,3,4-tetrahydroisoquinoline analogs”. Chinese Chemical Letters. Vol. 24. 2013, 941–944.

[25] E. Larghi, M. Amongero, A. Bracca, T. Kaufman. “The intermolecular Pictet–Spengler condensation with chiral carbonyl derivatives in the stereoselective syntheses of optically active isoquinoline and indole alkaloids”. Arkivoc. Vol. 12. 2005, 98–153.

[26] G. Romanelli, D. Ruiz, J. Autino, H. Giaccio. “A suitable preparation of Nsulfonyl-1,2,3,4-tetrahydroisoquinolines and their ring homologs with a reusable Preyssler heteropolyacid as catalyst”. Mol. Divers. Vol. 14. 2010, 803–807.

[27] J. Dong, X. Shi, J. Yan. “Efficient and practical one-pot conversions of Ntosyltetrahydroisoquinolines into isoquinolines and of N-tosyltetrahydro-b-carbolines into b-carbolines through tandem b-elimination and aromatization”, Eur. J. Org. Chem. 2010, 6987–6992.

[28] T. Ueda, H. Kotsuki. “Heteropoly acids: green chemical catalysts in organic synthesis”. Heterocycles. Vol. 76. 2008, 73–97.

[29] G. Romanelli, J. Autino. “Recent applications of heteropolyacids and related compounds in heterocycles synthesis”. Mini-Rev. Org. Chem. Vol. 6. 2009, 359–366.

[30] G. Pasquale, D. Ruiz, J. Autino, G. Baronetti, H. Thomas, G. Romanelli. “Efficient and suitable preparation of N-sulfonyl-1,2,3,4-tetrahydroisoquinolines and ring analogues using recyclable H6P2W18O62.24H2O/SiO2 catalyst”. C. R. Chimie. Vol. 15. 2012, 758–763.

[31] X. Zhang. “A note on the group bargaining solution”. Mathematical social sciences. Vol. 57. 2009, 155-160.

[32] B. Chen, S. Xiang, G. Qian. “Metal-organic frameworks with functional pores for recognition of small molecules”. Accounts of Chemical Research. Vol. 43. 2010, 1115-1124.

[33] Q. Zheng, W. Meng, G. Jiang, Z. Yu. “CuI-catalyzed C1-alkynylation of tetrahydroisoquinolines (THIQs) by A 3 reaction with tunable iminium ions”. Organic Letters. Vol. 15. 2013, 5928-5931.

[34] G. Dang, D. Le, T. Truong, N. Phan. “C1-alkynylation of tetrahydroisoquinoline by A3 reaction using metal-organic framework Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst”. Journal of Molecular Catalysis A: Chemical. Vol. 400. 2015, 162–169.

[35] M. Barbero, S. Bazzi, S. Cadamuro, S. Dughera, S. “o-Benzenedisulfonimide as a reusable acid catalyst for an easy, efficient, and green synthesis of tetrahydroisoquinolines and tetrahydro-b-carbolines through Pictet–Spengler reaction”. Tetrahedron Letters. Vol. 55. 2010, 6356–6359.

[36] A. Srivastava, S. Singh, S. Samanta. “(±)-CSA catalyzed Friedel-Crafts alkylation of indoles with 3-ethoxycarbonyl-3-hydoxyisoindolin-1-one: An easy access of 3-ethoxycarbonyl-3-indolylisoindolin-1-ones bearing a quaternary α-amino acid moiety”. Tetrahedron Letters. Vol. 54. 2013, 1444-1448.

[37] A. Srivastava, A. Yadav, S. Samanta. “Biopolymeric alginic acid: an efficient recyclable green catalyst for the Friedel–Crafts reaction of indoles with isoquinoline-1,3,4-triones in water”. Tetrahedron Letters. Vol. 56. 2015, 6003–6007.

[38] A. Afghan, M. Baradarani, J. Joule. “Efficient syntheses of 1,3-unsubstituted 1H-pyrazolo[3,4-b] quinolines”. Arkivoc. Vol. 2. 2009, 20-30.

[39] K. Nakajima, M. Okamura, J. Kondo, K. Domen, T. Tatsumi, S. Hayashi, M. Hara. “Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst”. Chemistry of Materials. Vol. 21. 2009, 186-193.

[40] M. Heravi, E. Hashemi, Y. Beheshtiha, K. Kamjou, M. Toolabi, N. Hosseintash. “Solvent-free multicomponent reactions using the novel N-sulfonic acid modified poly(styrene-maleic anhydride) as a solid acid catalyst”. Journal of Molecular Catalysis A: Chemical. Vol. 392. 2014, 173-180.

[41] Z. Chen, Y. Shi, Q. Shen, H. Xu, F. Zhang. “Facile and efficient synthesis of pyrazoloisoquinoline and pyrazolopyridine derivatives using recoverable carbonaceous material as solid acid catalyst”. Tetrahedron Letters. Vol. 56. 2015, 4749–4752.

[42] D. Ravelli, D. Dondi, M. Fagnoni, A. Albini. “Photocatalysis. A multi-faceted concept for green chemistry”. Chemical Society Reviews. Vol. 38. 2009, 1999-2011.

[43] M. Ischay, Z. Lu, T. Yoon. “Cycloadditions by oxidative visible light photocatalysis”. Journal of the American Chemical Society. Vol. 132. 2010, 8572-8574.

[44] M. Rueping, C. Vila, R. Koenigs, K. Poscharny, D. Fabry. “Dual catalysis: Combining photoredox and Lewis base catalysis for direct Mannich reactions”. Chemical Communications. Vol. 47. 2011, 2360-2362.

[45] P. Bravo, M. Crucianelli, A. Farina, S. Meille, A. Volonterio, M. Zanda. “Stereoselective total synthesis of enantiomerically pure 1-trifluoromethyl tetrahydroisoquinoline alkaloids”. European Journal of Organic Chemistry. 1998, 435-440.

[46] W. Fua, W. Guoa, G. Zoub, C. Xua. “Selective trifluoromethylation and alkynylation of tetrahydroisoquinolines using visible light irradiation by Rose Bengal”. Journal of Fluorine Chemistry. Vol. 140. 2012, 88–94.

[47] V. Rustagi, R. Tiwari, A. Kumar. “AgI-Catalyzed Cascade Strategy: Regioselective Access to Diversely Substituted Fused Benzimidazo [2,1-a]isoquinolines, Naphthyridines, Thienopyridines, and Quinoxalines in Water”. European Journal of Organic Chemistry. 2012, 4590–4602.

[48] S. Narayan, J. Muldoon, M. Finn, V. Fokin, H. Kolb, K. Sharpless. “On Water: Unique Reactivity of Organic Compounds in Aqueous Suspension”. Angewandte Chemie. Vol. 117. 2005, 3339–3343.

[49] F. Yang, J. Zhang, Y. Wu. “Facile synthesis of isoquinolines by imination and subsequentm palladacycle-catalyzed iminoannulation of internal alkynes”. Tetrahedron. Vol. 67. 2011, 2969-2973.

[50] L. Lai, H. Wang, J. Wu. “Facile assembly of 1-(4-haloisoquinolin-1-yl)ureas via a reaction of 2-alkynylbenzaldoxime, carbodiimide, and halide in water”. Tetrahedron. Vol. 70. 2014, 2246-2250.

[51] H. Gan, Y. Lu, Y. Huang, L. Ni, J. Xu, H. Yao, X. Wua. “Oxidation of 1 benzyldihydroisoquinolines or 1-benzyltetrahydroisoquinolines with dioxygen to 1-benzoylisoquinolines”. Tetrahedron Letters. Vol. 52. 2011, 1320–1324.
Publicado
2016-09-07
Cómo citar
LEÓN, Jadileyg Gabriela. QUÍMICA VERDE: UN NUEVO ENFOQUE AMBIENTAL PARA LA SINTESIS DE ISOQUINOLINAS Y SUS DERIVADOS. Investigación Joven, [S.l.], v. 3, n. 1, sep. 2016. ISSN 2314-3991. Disponible en: <http://revistas.unlp.edu.ar/InvJov/article/view/2766>. Fecha de acceso: 24 mar. 2017
Sección
Recopilaciones temáticas

Palabras clave

Química Verde; Química Orgánica; Heterociclos; Isoquinolinas