Biorrefinería de biomasa de jacinto de agua (Eichhornia crassipes): un enfoque sostenible con disolventes eutécticos profundos
DOI:
https://doi.org/10.24215/23143991e009Palabras clave:
Levulinato de alquilo, pretratamiento biológico, catalizadores heteropoliácidosResumen
Se investigó el papel crítico de los disolventes eutécticos profundos (DES) en los procesos de biorrefinería, centrándose en sus aplicaciones en el pretratamiento de la biomasa. La investigación destaca la eficacia de los sistemas DES en la eliminación de lignina y hemicelulosa, la producción de nanofibras de celulosa. También explora la síntesis de moléculas de plataforma utilizando DES. El estudio identifica el método de pretratamiento como crucial para maximizar los rendimientos de levulinato de alquilo. Se describen los pretratamientos químicos y biológicos sobre la biomasa de Jacinto de agua (Eichhornia crassipes) como medios para la obtención de un mayor rendimiento de celulosa con un contenido mínimo de hemicelulosa y lignina.
Referencias
Acevedo-Rocha, C. G., Gronenberg, L. S., Mack, M., Commichau, F. M. y Genee, H. J. (2019). Microbial cell factories for the sustainable manufacturing of B vitamins. Current Opinion in Biotechnology, 56, 18-29. https://doi.org/10.1016/j.copbio.2018.07.006
Ai, B., Li, W., Woomer, J., Li, M., Pu, Y., Sheng, Z., Zheng, L., Adedeji, A., Ragauskas, A. J. y Shi, J. (2020). Natural deep eutectic solvent mediated extrusion for continuous high-solid pretreatment of lignocellulosic biomass. Green Chemistry, 22(19), 6372-6383. https://doi.org/10.1039/d0gc01560a
Alonso, D. M., Wettstein, S. G., Bond, J. Q., Root, T. W. y Dumesic, J. A. (2011). Production of biofuels from cellulose and corn stover using alkylphenol solvents. ChemSusChem, 4(8), 1078-1081. https://doi.org/10.1002/cssc.201100256
Alvira, P., Tomás-Pejó, E., Ballesteros, M. y Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
Amarasekara, A. S. y Wiredu, B. (2014). Acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water solvent system. Bioenergy Research, 7(4), 1237-1243. https://doi.org/10.1007/s12155-014-9459-z
Bajpai, P. (2021). Deep eutectic solvents for pretreatment of lignocellulosic biomass. Springer. https://doi.org/10.1007/978-981-16-4013-1
Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52(2), 858-875. https://doi.org/10.1016/j.enconman.2010.08.013
Bart, H. J., Reidetschläger, J., Schatka, K. y Lehmann, A. (1994). Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Industrial and Engineering Chemistry Research, 33(1), 21-25. https://doi.org/10.1021/ie00025a004
Cañadas, R., González-Miquel, M., González, E. J., Díaz, I. y Rodríguez, M. (2020). Overview of neoteric solvents as extractants in food industry: A focus on phenolic compounds separation from liquid streams. Food Research International, 136, 109558. https://doi.org/10.1016/J.FOODRES.2020.109558
Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A. y Alfani, F. (2004). Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochemistry 39(11), 1533-1542. https://doi.org/10.1016/S0032-9592(03)00285-1
Chen, Y. y Mu, T. (2019). Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy and Environment, 4(2), 95-115. https://doi.org/10.1016/j.gee.2019.01.012
Cherukuri, P. K., Songkiatisak, P., Ding, F., Jault, J. M. y Xu, X. H. N. (2020). Antibiotic Drug Nanocarriers for Probing of Multidrug ABC Membrane Transporter of Bacillus subtilis. ACS Omega, 5(3), 1625-1633. https://doi.org/10.1021/acsomega.9b03698
Costa, L. G. y Aschner, M. (2014). Organic Solvents. En Encyclopedia of the Neurological Sciences (pp. 694–695). Academic Press. https://doi.org/10.1016/B978-0-12-385157-4.00268-2
Cui, W., Han, L., Suo, F., Liu, Z., Zhou, L. y Zhou, Z. (2018). Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World Journal of Microbiology and Biotechnology, 34, 145. https://doi.org/10.1007/s11274-018-2531-7
Deng, J., Wang, Y., Pan, T., Xu, Q., Guo, Q. X. y Fu, Y. (2013). Conversion of carbohydrate biomass to γ-valerolactone by using water-soluble and reusable iridium complexes in acidic aqueous media. ChemSusChem, 6(7), 1163-1167. https://doi.org/10.1002/cssc.201300245
Di Menno Di Bucchianico, D., Wang, Y., Buvat, J. C., Pan, Y., Casson Moreno, V. y Leveneur, S. (2022). Production of levulinic acid and alkyl levulinates: A process insight. Green Chemistry, 24, 614-646. https://doi.org/10.1039/D1GC02457D
Domínguez de María, P. (2017). Ionic liquids, switchable solvents, and eutectic mixtures. En F. Pena-Pereira y M. Tobiszewski (Ed.), The application of green solvents in separation processes (pp. 139-154). Elsevier. https://doi.org/10.1016/B978-0-12-805297-6.00006-1
Eka-Sari, E., Syamsiah, S., Sulistyo, H. y Hidayat, M. (2014). Effect of biological pretreatment of water hyacinth on enzymatic hydrolysis for bioethanol production. Asian Journal of Chemistry, 26(20), 6727-6732. https://doi.org/10.14233/ajchem.2014.16596
Espinosa Negrín, A. M., López González, L. M. y Casdelo Gutierrez, N. L. (2021). Pretreatment of lignocellulosic biomass: a brief review of the principal methods applied. Centro Azúcar, 48(3), 1-12.
Garves, K. (1988). Acid catalyzed degradation of cellulose in alcohols. Journal of Wood Chemistry and Technology, 8(1), 121-134. https://doi.org/10.1080/02773818808070674
Gawade, A. B. y Yadav, G. D. (2018). Microwave assisted synthesis of 5-ethoxymethylfurfural in one pot from D-fructose by using deep eutectic solvent as catalyst under mild condition. Biomass and Bioenergy, 117, 38-43. https://doi.org/10.1016/j.biombioe.2018.07.008
Goto, A. y Kunioka, M. (1992). Biosynthesis and hydrolysis of poly(γ-glutamic acid) from Bacillus subtilis IF03335. Bioscience, Biotechnology, and Biochemistry, 56(7), 1031-1035. https://doi.org/10.1271/bbb.56.1031
Guan, Q., Lei, T., Wang, Z., Xu, H., Lin, L., Chen, G., Li, X. y Li, Z. (2018). Preparation of ethyl levulinate from wheat straw catalysed by sulfonate ionic liquid. Industrial Crops and Products, 113, 150-156. https://doi.org/10.1016/j.indcrop.2018.01.030
Izumi, Y., Matsuo, K. y Urabe, K. (1983). Efficient homogeneous acid catalysis of heteropoly acid and its characterization through ether cleavage reactions. Journal of Molecular Catalysis 18(3), 299-314. https://doi.org/10.1016/S0304-5102(83)80004-2
Jongmeesuk, A., Sanguanchaipaiwong, V. y Ochaikul, D. (2014). Pretreatment and enzymatic hydrolysis from water hyacinth (Eichhornia crassipes). KMITL Science and Technology Journal, 14(2), 79-86.
Kozhevnikov, I. V. y Matveev, K. I. (1982). Homogeneous catalysts based on heteropoly acids (review). Applied Catalysis, 5(2), 135-150. https://doi.org/10.1016/0166-9834(83)80128-6
Li, A. O., Hou, X. D., Lin, K. P., Zhang, X. y Fu, M. H. (2018). Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. Journal of Bioscience and Bioengineering, 126(3), 1-9. https://doi.org/10.1016/j.jbiosc.2018.03.011
Liang, X., Fu, Y. y Chang, J. (2019). Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology. Separation and Purification Technology, 210, 409-416. https://doi.org/10.1016/j.seppur.2018.08.021
Liu, C., Feng, Q., Yang, J. y Qi, X. (2018). Catalytic production of levulinic acid and ethyl levulinate from uniconazole-induced duckweed (Lemna minor). Bioresource Technology, 255, 50-57. https://doi.org/10.1016/j.biortech.2018.01.087
Liu, Y., Li, J., Du, G., Chen, J. y Liu, L. (2017). Metabolic engineering of Bacillus subtilis fueled by systems biology: recent advances and future directions. Biotechnology Advances, 35(1), 20-30. https://doi.org/10.1016/j.biotechadv.2016.11.003
Luan, Q. J., Liu, L. J., Gong, S. W., Lu, J., Wang, X. y Lv, D. M. (2018). Clean and efficient conversion of renewable levulinic acid to levulinate esters catalyzed by an organic-salt of H4SiW12O40. Process Safety and Environmental Protection, 117, 341-349. https://doi.org/10.1016/j.psep.2018.05.015
Mamilla, J. L. K., Novak, U., Grilc, M. y Likozar, B. (2019). Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass and Bioenergy 120, 417-425. https://doi.org/10.1016/j.biombioe.2018.12.002
Mehdi, H., Fábos, V., Tuba, R., Bodor, A., Mika, L. T. y Horváth, I. T. (2008). Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes. Topics in Catalysis, 48, 49-54. https://doi.org/10.1007/s11244-008-9047-6
Morin, P., Hamad, B., Sapaly, G., Carneiro Rocha, M. G., Pries de Oliveira, P. G., Gonzalez, W. A., Andrade Sales, E. y Essayem, N. (2007). Transesterification of rapeseed oil with ethanol I. Catalysis with homogeneous Keggin heteropolyacids. Applied Catalysis A: General, 330, 69-76. https://doi.org/10.1016/j.apcata.2007.07.011
Mosafa, L., Moghadam, M. y Shahedi, M. (2013). Papain enzyme supported on magnetic nanoparticles: preparation, characterization and application in the fruit juice clarification. Chinese Journal of Catalysis, 34(10), 1897-1904. https://doi.org/10.1016/s1872-2067(12)60663-9
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. y Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
Oku, H., Matsubara, K. y Booka, M. (2015). Usability of pdf based digital textbooks to the physically disabled university student. Studies in Health Technology and Informatics, 217, 3-10. https://doi.org/10.3233/978-1-61499-566-1-3
Piñeros-Castro, Y. (2016). Aprovechamiento de biomasa lignocelulósica: algunas experiencias de investigación en Colombia. (1ª ed.). Universidad Jorge Tadeo Lozano. https://doi.org/10.2307/j.ctv2rcnqc5
Pinheiro, P. F., Chaves, D. M. y da Silva, M. J. (2019). One-pot synthesis of alkyl levulinates from biomass derivative carbohydrates in tin(II) exchanged silicotungstates-catalyzed reactions. Cellulose, 26, 7953-7969. https://doi.org/10.1007/s10570-019-02665-w
Raspolli Galletti, A. M., Antonetti, C., Fulignati, S. y Licursi, D. (2020). Direct alcoholysis of carbohydrate precursors and real cellulosic biomasses to alkyl levulinates: a critical review. Catalysts, 10(10), 1-61. https://doi.org/10.3390/catal10101221
Sassner, P., Mårtensson, C. G., Galbe, M. y Zacchi, G. (2008). Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresource Technology, 99(1), 137-145. https://doi.org/10.1016/j.biortech.2006.11.039
Schallmey, M., Singh, A. y Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50(1), 1-17. https://doi.org/10.1139/w03-076
Sert, M., Arslanoğlu, A. y Ballice, L. (2018). Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents. Renewable Energy, 118, 993-1000. https://doi.org/10.1016/j.renene.2017.10.083
Sindhu, R., Binod, P., Pandey, A., Madhavan, A., Alphonsa, J. A., Vivek, N., Gnansounou, E., Castro, E. y Faraco, V. (2017). Water hyacinth a potential source for value addition: an overview. Bioresource Technology, 230, 152-162. https://doi.org/10.1016/j.biortech.2017.01.035
Singh, J., Suhag, M. y Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydrate Polymers, 117, 624-631 https://doi.org/10.1016/j.carbpol.2014.10.012
Singh, M. B., Kumar, V. S., Chaudhary, M. y Singh, P. (2021). A mini review on synthesis, properties and applications of deep eutectic solvents. Journal of the Indian Chemical Society, 98(11), 100210. https://doi.org/10.1016/j.jics.2021.100210
Singh, P., Kumar, P., Kumari, K., Sharma, P., Mozumdar, S. y Chandra, R. (2011). A rapid and simple route for the synthesis of lead and palladium nanoparticles in tetrazolium based ionic liquid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 78(2), 909-912. https://doi.org/10.1016/j.saa.2010.11.039
Su, Y., Liu, C., Fang, H. y Zhang, D. (2020). Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories, 19(173), 1-12. https://doi.org/10.1186/s12934-020-01436-8
Tan, Y. T., Ngoh, G. C. y Chua, A. S. M. (2018). Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Industrial Crops and Products, 123, 271-277. https://doi.org/10.1016/j.indcrop.2018.06.091
van Dijl, J. M. y Hecker, M. (2013). Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microbial Cell Factories, 12(3), 1-6. https://doi.org/10.1186/1475-2859-12-3
Wang, C., Cao, Y., Wang, Y., Sun, L. y Song, H. (2019). Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microbial Cell Factories, 18(90), 1-13. https://doi.org/10.1186/s12934-019-1139-4
Westers, L., Westers, H. y Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1694(1-3), 299-310. https://doi.org/10.1016/j.bbamcr.2004.02.011
Yamanaka, N. y Shimazu, S. (2023). Conversion of biomass-derived molecules into alkyl levulinates using heterogeneous catalysts. Reactions, 4, 667-678. https://doi.org/10.3390/reactions4040038
Zdanowicz, M., Spychaj, T. y Maka, H. (2016). Imidazole-based deep eutectic solvents for starch dissolution and plasticization. Carbohydrate Polymers, 140, 416-423. https://doi.org/10.1016/j.carbpol.2015.12.036
Zhang, C. W., Xia, S. Q. y Ma, P. S. (2016). Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219, 1-5. https://doi.org/10.1016/j.biortech.2016.07.026
Zhao, S., Xu, G., Chang, C., Fang, S., Liu, Z. y Du, F. (2015). Direct conversion of carbohydrates into ethyl levulinate with potassium phosphotungstate as an efficient catalyst. Catalysts, 5(4), 1897-1910. https://doi.org/10.3390/catal5041897
Zweers, J. C., Barák, I., Becher, D., Driessen, A. J. M., Hecker, M., Kontinen, V. P., Saller, M. J., Vavrová, L. y van Dijl, J. M. (2008). Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microbial Cell Factories, 7(10), 1-20. https://doi.org/10.1186/1475-2859-7-10
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Andrés F. Monroy Ramirez, Gustavo P. Romanelli, Ángel G. Sathicq, Gerardo A. Caicedo Pineda, José J. Martínez Zambrano

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.












