PP-PS registration in the reflectivity domain: A waveform-preserving approach
DOI:
https://doi.org/10.24215/18527744e001Keywords:
PP-PS registration, inversion, velocity, optimizationAbstract
Joint PP-PS amplitude inversion and attribute analysis require mapping converted PS wave data to the PP time domain so that similar reflectors share the same two-way travel times. This process, known as PP-PS data registration, often results in non-stationary PS data, where wavelet spectral content varies with time and location, affecting subsequent inversion results and necessitating postprocessing to correct these issues. To address this limitation, we propose a PP-PS registration method in the reflectivity domain. The strategy consists of two steps. First, we perform sparse-spike deconvolution on both PP and PS data to transform them into the reflectivity domain, based on the hypothesis that suitable wavelets and sparse-spike reflectivities can be estimated from the data. The sparse-spike solutions are obtained by solving an inverse problem regularized with a sparsity-promoting norm and solved via proximal algorithms. In the second step, we iteratively adjust the sparse-spike PS reflectivity to match its PP counterpart using a smooth, monotonic warping function derived from the Vp/Vs ratio, represented as a cubic spline with a fixed number of knots. At each iteration, both reflectivities are convolved with a stationary replacement wavelet, and the resulting match is evaluated. Optimizing the knot values leads to a nonlinear, multimodal problem, which we solve using very fast simulated annealing. Unlike conventional methods that operate in the data domain, our approach produces stationary PP and PS seismic data with aligned reflectors in two-way travel time, eliminating waveform distortions and requiring no additional processing. Numerical tests confirm that the method preserves amplitude and outperforms techniques like dynamic time warping, yielding a cleaner spectrum and distortion-free waveforms for reliable interpretation.
Downloads
References
Anderson, K. R., & Gaby, J. E. (1983). Dynamic waveform matching. Information Sciences, 31(3), 221–242. https://doi.org/10.1016/0020-0255(83)90054-3
Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research (1896-1977), 67(11), 4427–4440. https://doi.org/10.1029/JZ067i011p04427
Beck, A., & Teboulle, M. (2009). Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), 2419–2434. https://doi.org/10.1109/TIP.2009.2028250
Castagna, J., Batzle, M., & Eastwood, R. (1985). Relationships between compressional and shear-wave velocities in clastic silicate rocks. Geophysics, 50, 551–570. https://doi.org/10.1190/1.1441933
Chai, X., Tang, G., Lin, K., Yan, Z., Gu, H., Peng, R., Sun, X., & Cao, W. (2021). Deep learning for multitrace sparse-spike deconvolution. Geophysics, 86(3), V207–V218. https://doi.org/10.1190/geo2020-0342.1
Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1), 89–97. https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
Chopra, S., & Sharma, R. K. (2020). Addressing artifacts in PP-PS registration prior to performing joint impedance inversion. The Leading Edge, 39(1), 47–52. https://doi.org/10.1190/tle39010047.1
Compton, S., & Hale, D. (2014). Estimating VP/VS ratios using smooth dynamic image warping. Geophysics, 79(6), V201–V215. https://doi.org/10.1190/geo2014-0022.1
Cooke, D., & Schneider, W. (1983). Generalized linear inversion of reflection seismic data. Geophysics, 46(6), 665–676. https://doi.org/10.1190/1.1441497
Debeye, H. W. J., & van Riel, P. (1990). L p -norm deconvolution. Geophysical Prospecting, 38(4), 381–403. https://doi.org/10.1111/j.1365-2478.1990.tb01852.x
Fomel, S. (2007). Local seismic attributes. Geophysics, 72(3), A29–A33. https://doi.org/10.1190/1.2437573
Fomel, S., & Backus, M. M. (2003). Multicomponent seismic data registration by least squares. SEG Technical Program Expanded Abstracts, 781–784. https://doi.org/10.1190/1.1818052
Fomel, S., Backus, M., Fouad, K., Hardage, B., & Winters, G. (2005). A multistep approach to multicomponent seismic image registration with application to a West Texas carbonate reservoir study. SEG Technical Program Expanded Abstracts,1018–1021. https://doi.org/10.1190/1.2147852
Fritsch, F. N., & Butland, J. (1984). A method for constructing local monotone piecewise cubic interpolants. SIAM Journal on Scientific and Statistical Computing, 5(2), 300–304. https://doi.org/10.1137/0905021
Gaiser, J. E. (1996). Multicomponent VP/VS correlation analysis. Geophysics, 61(4), 1137–1149. https://doi.org/10.1190/1.1822598
Gao, W., & Sacchi, M. D. (2018). Multicomponent seismic data registration by nonlinear optimization. Geophysics, 83(1), V1–V10. https://doi.org/10.1190/geo2017-0105.1
Gardner, G., Gardner, L., & Gregory, A. (1974). Formation velocity and density: The diagnostic basics for stratigraphic traps. Geophysics, 74, 770–780. https://doi.org/10.1190/1.1440465
Geis, W. T., Stewart, R. R., Jones, M. J., & Katapodis, P. E. (1990). Processing, correlating, and interpreting converted shear waves from borehole data in southern Alberta. Geophysics, 55(6), 660–669. https://doi.org/10.1190/1.1442878
Gelpi, G., Pérez, D. O., & Velis, D. R. (2020). Automatic well tying and wavelet phase estimation with no waveform stretching or squeezing. Geophysics, 85(3), D83–D91. https://doi.org/10.1190/geo2019-0284.1
Gelpi, G. R., Pérez, D. O., & Velis, D. R. (2019). Seismic wavelet phase estimation by l1-norm minimization. Journal of Seismic Exploration, 28(4), 393–411. https://geophysical-press.com/journal/JSE/articles/150
Geng, W., Chen, X., Li, J., Wang, J., Wu, F., Tang, W., & Zhang, J. (2023). Warped P-SV wavelet distortion correction using a time-frequency adaptive shaping filter. Geophyiscs, 88(2), V101–V112. https://doi.org/10.1190/geo2022-0368.1
Hale, D. (2013). Dynamic warping of seismic images. Geophysics, 78(2), S105–S115. https://doi.org/10.1190/geo2012-0327.1
Hennenfent, G., van den Berg, E., Friedlander, M. P., & Hermann, F. J. (2008). New insights into one-norm solvers from the Pareto curve. Geophysics, 73(4), 23–26. https://doi.org/10.1190/1.2944169
Herrera, H., Fomel, S., & van der Baan, M. (2014). Automatic approaches for seismic to well tying. Interpretation, 2(2), SD101–SD109. https://doi.org/10.1190/INT-2013-0130.1
Ingber, L. (1989). Very fast simulated re-annealing. Journal of Mathematical Computation and Modelling, 12, 967–973. https://doi.org/10.1016/0895-7177(89)90202-1
Kazemi, N. (2018). Automatic blind deconvolution with Toeplitz-structured sparse total least squares. Geophysics, 83(6), V345–V357. https://doi.org/10.1190/geo2018-0136.1
Lindsay, R., & Van Koughnet, R. (2001). Sequential Backus averaging: Upscaling well logs to seismic wavelengths. The Leading Edge, 20(2), 188–191. https://doi.org/10.1190/1.1438908
Liner, C. L., & Clapp, R. G. (2004). Nonlinear pairwise alignment of seismic traces. The Leading Edge, 23(11), 1146–1150. https://doi.org/10.1190/1.1825937
Lines, L., Zou, Y., Zhang, A., Hall, K., Embleton, J., Palmiere, B., Reine, C., Bessette, P., Cary, P., & Secord, D. (2005). VP/VS characterization of a heavy-oil reservoir. The Leading Edge, 24(11), 1134–1136. https://doi.org/10.1190/1.2135111
Lu, J., Yang, Z., Wang, Y., & Shi, Y. (2015). Joint PP and PS AVA seismic inversion using exact zoeppritz equations. Geophysics, 80(5), R239–R250. https://doi.org/10.1190/geo2014-0490.1
Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. https://doi.org/10.1016/0022-2836(70)90057-4
Oldenburg, D. W., Scheuer, T., & Levy, S. (1983). Recovery of the acoustic impedance from reflection seismograms. Geophysics, 48(10), 1318–1337. https://doi.org/10.1190/1.1441413
Pereg, D., Cohen, I., & Vassiliou, A. A. (2020). Sparse seismic deconvolution via recurrent neural network. Journal of Applied Geophysics, 175, 103979. https://doi.org/10.1016/j.jappgeo.2020.103979
Pérez, D. O., Velis, D. R., & Sacchi, M. D. (2013). High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy. Geophysics, 78(5), R185–R195. https://doi.org/10.1190/geo2013-0077.1
Pérez, D. O., & Velis, D. R. (2011). Sparse-spike AVO/AVA attributes from prestack data. SEG Technical Program Expanded Abstracts, 30, 340–344. https://doi.org/10.1190/1.3627906
Pérez, D. O., & Velis, D. R. (2018). Simple and fast gradient-based impedance inversion using total variation regularization. Journal of Seismic Exploration, 27(5), 473–486. https://geophysical-press.com/journal/JSE/articles/174
Pérez, D. O., Velis, D. R., & Sacchi, M. D. (2017). Three-term inversion of prestack seismic data using a weighted l 2,1 mixed norm. Geophysical Prospecting, 65(6), 1477–1495. https://doi.org/10.1111/1365-2478.12500
Ricker, N. (1940). The form and nature of seismic waves and the structure of seismograms. Geophysics, 5, 348–366. https://doi.org/10.1190/1.1441816
Robinson, E. A., & Ebrom, D. A. (1996). Deconvolution 2. SEG.
Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F
Sacchi, M. D. (1997). Reweighting strategies in seismic deconvolution. Geophysical Journal International, 129(3), 651–656. https://doi.org/10.1111/j.1365-246X.1997.tb04500.x
Sacchi, M. D., Velis, D. R., & Ulrych, T. J. (1996). Wavelet via polycepstra. SEG Technical Program Expanded Abstracts, 1583–1586.
Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43–49. https://doi.org/10.1109/TASSP.1978.1163055
Stewart, R. R., Gaiser, J. E., Brown, R. J., & Lawton, D. C. (2003). Converted-wave seismic exploration: Applications. Geophysics, 68(1), 40–57. https://doi.org/10.1190/1.1543193
Sui, Y., & Ma, J. (2020). Blind sparse-spike deconvolution with thin layers and structure. Geophysics, 85(6), V481–V496. https://doi.org/10.1190/geo2019-0423.1
Taner, M. T., Koehler, F., & Sheriff, R. E. (1979). Complex seismic trace analysis. Geophysics, 44(6), 1041–1063. https://doi.org/10.1190/1.1440994
Taylor, H. L., Banks, S. C., & McCoy, J. F. (1979). Deconvolution with the l 1 norm. Geophysics, 44(1), 39–52. https://doi.org/10.1190/1.1440921
van den Berg, E., & Friedlander, M. (2008). Probing the Pareto frontier for basis pursuit solutions. SIAM Journal of Scientific Computing, 31(2), 890–912. https://doi.org/10.1137/080714488
Walden, A., & Hosken, J. (1986). The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution. Geophysical Prospecting, 34, 1038–1066.
Wiggins, R. (1978). Minimum entropy deconvolution. Geoexploration, 16, 21–35. https://doi.org/10.1016/0016-7142(78)90005-4
Yilmaz, Ö. (2001). Seismic data analysis: Processing, inversion, and interpretation of seismic data. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801580
Yuan, J. J., Nathan, G., Calvert, A., & Bloor, R. (2008). Automated C-wave registration by simulated annealing. SEG Technical Program Expanded Abstracts, 1043–1047. https://doi.org/10.1190/1.3059105
Zhang, F., & Wang, Y. (2009). Amplitude-preserving calibration of PP- and PS-wave reflection events. SEG Global Meeting Abstracts, 82–82. https://doi.org/10.1190/1.3603607
Zoeppritz, K. (1919). Vii b. über reflexion und durchgang seismischer wellen durch unstetigkeitsflächen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1919, 66–84. http://eudml.org/doc/59042
Zuleta, L. M., & Lawton, D. C. (2012). VP/VS characterization of a shale gas basin, northeast British Columbia, Canada. SEG Technical Program Expanded Abstracts, 1–5. https://doi.org/10.1190/segam2012-1172.1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Daniel O. Perez, Danilo R. Velis

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Starting in 2022 (Vol. 43 number 2) articles will be published in the journal under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0)
According to these terms, the material can be shared (copied and redistributed in any medium or format) and adapted (remixed, transformed and created from the material another work), provided that a) the authorship and the original source of its publication (journal and URL of the work), b) is not used for commercial purposes and c) the same license terms are maintained.
Prior to this date the articles were published in the journal under a Creative Commons Attribution license (CC BY)
In both cases, the acceptance of the originals by the journal implies the non-exclusive assignment of the economic rights of the authors in favor of the editor, who allows reuse, after editing (postprint), under the license that corresponds according to the edition.
Such assignment means, on the one hand, that after its publication (postprint) in the GEOACTA Magazine of the Association of Geophysicists and Geodesists, the authors can publish their work in any language, medium and format (in such cases, it is requested that it be recorded that the material was originally published in this journal); on the other, the authorization of the authors for the work to be harvested by SEDICI, the institutional repository of the National University of La Plata, and to be disseminated in the databases that the editorial team considers appropriate to increase visibility. of the publication and its authors.
Likewise, the journal encourages the authors so that after their publication in the Journal of the Association of Geophysicists and Geodesists, they deposit their productions in other institutional and thematic repositories, under the principle that offering society scientific production and Unrestricted academic scholarship contributes to a greater exchange of global knowledge.












