Groundwater age: Principles and application of environmental tracers

Authors

  • Alejandro Basaldua Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina https://orcid.org/0009-0002-8553-8362
  • Emiliano Alcaraz Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina https://orcid.org/0009-0004-7471-1072
  • Daniel Emilio Martínez Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina https://orcid.org/0000-0002-7640-1754

DOI:

https://doi.org/10.24215/18527744e002

Keywords:

groundwater age, dating, environmental tracers, age distributions, aquifer dynamics

Abstract

This work reviews the concept of groundwater age and its estimation through environmental tracers, with the objective of providing a didactic guide for hydrogeologists and professionals interested in approaching this field. The theoretical foundations of groundwater age studies are presented, including key terminology and the practical relevance of this tool as a complementary approach to understanding aquifer dynamics, recharge, vulnerability, and renewability. Groundwater age can be estimated from the concentration of environmental tracers, substances present in trace amounts whose measurement allows calculating the time elapsed since infiltration. This method provides information independent of traditional hydraulic approaches and is especially useful for calibrating numerical flow models in heterogeneous systems. The basic principles of application, the available types of tracers, the range of ages they cover and the main sources of error and uncertainty are described to clarify common misconceptions in their use. The causes of discrepancies between the calculated age and the actual age of water include tracer degradation, degassing, subsurface sources, excess air, recent atmospheric contamination, retardation relative to water molecules, and transit through the unsaturated zone. Furthermore, the text explains how age distributions within a single water sample affect measured tracer concentrations and the interpretation of ages, a key aspect for understanding the true dynamics of the system. It is concluded that the combined use of multiple tracers improves the precision and reliability of age estimations.

Downloads

Download data is not yet available.

References

Aggarwal, P. K., Araguas-Araguas, L., Choudhry, M., van Duren, M. y Froehlich, K. (2013). Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis. Groundwater, 51(5), 605-615. https://doi.org/10.1111/gwat.12110

Alcaraz, E., Basaldúa, A., Quiroz-Londoño, O. M., Dapeña, C., Ibarra, E., Copia, L. y Martı́nez, D. (2024). Using 3H as a tracer to study streamflow components in large plain catchments on temperate climate. Hydrological Processes, 38(8), e15264. https://doi.org/10.1002/hyp.15264

Andrews, J. N. y Kay, R. L. F. (1982). Natural production of tritium in permeable rocks. Nature, 298(5872), 361-363. https://doi.org/10.1038/298361a0

Basaldúa, A., Alcaraz, E., Quiroz-Londoño, M., Dapeña, C., Ibarra, E., Vélez-Agudelo, C., Copia, L. y Martı́nez, D. (2022). Reconstruction of the record of tritium in precipitation in the temperate zone of South America. Hydrological Processes, 36(9), e14691. https://doi.org/10.1002/hyp.14691

Bethke, C. M. y Johnson, T. M. (2008). Groundwater age and groundwater age dating. Annual Review of Earth and Planetary Sciences, 36, 121-152. https://doi.org/10.1146/annurev.earth.36.031207.124210

Busenberg, E. y Plummer, L. N. (1992). Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: The alluvium and terrace system of central Oklahoma. Water Resources Research, 28(9), 2257-2283. https://doi.org/10.1029/92WR01263

Cabrera, A., Blarasin, M. y Maldonado, L. (2017). Groundwater age and hydrothermalism of confined aquifers in the Argentine Pampean plain. Geothermal Energy, 5(1), 6. https://doi.org/10.1186/s40517-017-0064-1

Campbell, A. G., Cartwright, I., Cendón, D. I. y Currell, M. J. (2024). Multiple isotope tracers reveal the sources of water sustaining ecologically and culturally significant springs, and their vulnerability to mining development. Journal of Hydrology, 624, 132078. https://doi.org/10.1016/j.jhydrol.2024.132078

Cartwright, I., Cendón, D., Currell, M. y Meredith, K. (2017). A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations. Journal of Hydrology, 555, 797-811. https://doi.org/10.1016/j.jhydrol.2017.10.053

Clark, I. y Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Lewis Publishers.

Cook, P. G. (2020). Introduction to Isotopes and Environmental Tracers as Indicators of Groundwater Flow. The Groundwater Project. https://doi.org/10.21083/978-1-7770541-8-2

Cook, P. G. y Herczeg, A. L. (Eds.). (2000). Environmental Tracers in Subsurface Hydrology. Springer. https://doi.org/10.1007/978-1-4615-4557-6

Cook, P. G. y Solomon, D. K. (1995). Transport of atmospheric trace gases to the water table: Implications for groundwater dating with chlorofluorocarbons and krypton-85. Water Resources Research, 31(2), 263-270. https:// doi.org/ 10.1029/94WR02232

Cook, P. G. y Solomon, D. K. (1997). Recent advances in dating young groundwater: Chlorofluorocarbons, 3H/3He and 85Kr. Journal of Hydrology, 191(1–4), 245-265. https://doi.org/10.1016/S0022-1694(96)03051-X

Corcho Alvarado, J. A., Purtschert, R., Barbecot, F., Chabault, C., Rueedi, J., Schneider, V., Aeschbach-Hertig, W., Kipfer, R. y Loosli, H. H. (2007). Constraining the age distribution of highly mixed groundwater using 39Ar: A multiple environmental tracer (3H/3He, 85Kr, 39Ar, and 14C) study in the semiconfined Fontainebleau Sands Aquifer (France). Water Resources Research, 43(3), W03427. https://doi.org/10.1029/2006WR005096

De Jong, M., Moran, J. E. y Visser, A. (2020). Identifying paleowater in California drinking water wells. Quaternary International, 547, 197-207. https://doi.org/10.1016/j.quaint.2019.04.008

Deslandes, A., Gerber, C., Lamontagne, S., Wilske, C. y Suckow, A. (2019). Environmental tracers in the Beetaloo Basin: Aquifer and groundwater characterization. GISERA. http://hdl.handle.net/102.100.100/385078?index=1

Döll, P. y Fiedler, K. (2008). Global-scale modeling of groundwater recharge. Hydrology and Earth System Sciences, 12(3), 863-885. https://doi.org/10.5194/hess-12-863-2008

Dutton, G. S., Hall, B. D., Montzka, S. A., Nance, J. D., Clingan, S. D. y Petersen, K. M. (2024). Combined Atmospheric Chlorofluorocarbon-12 Dry Air Mole Fractions from the NOAA GML Halocarbons Sampling Network, 1977–2024, Version: 2024-03-07. https://doi.org/10.15138/PJ63-H440

Ferguson, G., Cuthbert, M. O., Befus, K., Gleeson, T. y McIntosh, J. C. (2020). Rethinking groundwater age. Nature Geoscience, 13(9), 592-594. https://doi.org/10.1038/s41561-020-0629-7

Figini, A. J., Gomez, G. J., Huarte, R. A. y Carbonari, J. E. (1983). Los isótopos ambientales (Tritio-Carbono 14, Deuterio y oxı́geno-18) en el estudio de la salinización de las aguas subterráneas de la ciudad de Mar del Plata–Provincia de Buenos Aires–Argentina. Revista del Museo de La Plata, 9(77), 103-120.

Florkowski, T. (1991). Natural production of radionuclides in geological formations. Journal of Physics G: Nuclear and Particle Physics, 17(S), S513. https://doi.org/10.1088/0954-3899/17/S/052

Fontes, J. (1983). Dating of groundwater. En International Atomic Energy Agency (Ed.), Guidebook on nuclear techniques in hydrology (pp. 285-317). International Atomic Energy Agency.

Gleeson, T., VanderSteen, J., Sophocleous, M. A., Taniguchi, M., Alley, W. M., Allen, D. M. y Zhou, Y. (2010). Groundwater sustainability strategies. Nature Geoscience, 3(6), 378-379. https://doi.org/10.1038/ngeo881

Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. y Cardenas, M. B. (2016). The global volume and distribution of modern groundwater. Nature Geoscience, 9(2), 161-167. https://doi.org/10.1038/ngeo2590

Gourdol, L., Stewart, M. K., Morgenstern, U. y Pfister, L. (2023). Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer. Hydrology and Earth System Sciences Discussions, 28(15), 1-48. https://doi.org/10.5194/hess-28-3519-2024

Han, L.-F. y Wassenaar, L. I. (2020). Principles and uncertainties of 14C age estimations for groundwater transport and resource evaluation. Isotopes in Environmental and Health Studies, 57(2), 111-141. https://doi.org/10.1080/10256016.2020.1857378

International Atomic Energy Agency. (1992). Statistical Treatment of Data on Environmental Isotopes in Precipitation (Technical Series Report No. 331). IAEA.

International Atomic Energy Agency. (2006). Use of Chlorofluorocarbons in Hydrology: A Guidebook. IAEA.

Jankovec, J., Vitvar, T., Šanda, M., Matsumoto, T. y Han, L. F. (2017). Groundwater recharge and residence times evaluated by isotopes of hydrogen and oxygen, noble gases, and CFCs in a mountain catchment in the Jizera Mts., northern Czech Republic. Geochemical Journal, 51(5), 423-437. https://doi.org/10.2343/geochemj.2.0469

Jasechko, S., Perrone, D., Befus, K. M., Cardenas, M. B., Ferguson, G., Gleeson, T., Luijendijk, E., McDonnell, J. J., Taylor, R. G., Wada, Y. y Kirchner, J. W. (2017). Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geoscience, 10(6), 425-429. https://doi.org/10.1038/ngeo2943

Jurgens, B. C., Böhlke, J. K. y Eberts, S. M. (2012). TracerLPM (Version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data (Techniques and Methods 4-F3). US Geological Survey. https://doi.org/10.3133/tm4F3

Jurgens, B. C., Faulkner, K., McMahon, P. B., Hunt, A. G., Casile, G., Young, M. B. y Belitz, K. (2022). Over a third of groundwater in USA public-supply aquifers is Anthropocene-age and susceptible to surface contamination. Communications Earth & Environment, 3(1), 153. https://doi.org/10.1038/s43247-022-00473-y

Kazemi, G. A., Lehr, J. H. y Perrochet, P. (2006). Groundwater Age. John Wiley & Sons. https://doi.org/10.1002/0471929514

Kipfer, R., Aeschbach-Hertig, W., Peeters, F. y Stute, M. (2002). Noble gases in lakes and ground waters. En D. Porcelli, C. Ballentine y R. Wieler (Eds.), Noble Gases in Geochemistry and Cosmochemistry (pp. 615-700). Mineralogical Society of America. https://doi.org/10.1515/9781501509056-016

Kralik, M. (2015). How to estimate mean residence times of groundwater. Procedia Earth and Planetary Science, 13, 301-306. https://doi.org/10.1016/j.proeps.2015.07.070

Leibundgut, C., Maloszewski, P. y Külls, C. (2009). Tracers in Hydrology. Wiley-Blackwell.

Lu, Z.-T., Schlosser, P., Smethie, J. W., Sturchio, N. C., Fischer, T. P., Kennedy, B. M., Purtschert, R., Severinghaus, J. P., Severinghaus, D. K. y Tanhua, T. (2014). Tracer applications of noble gas radionuclides in the geosciences. Earth-Science Reviews, 138, 196-214. https://doi.org/10.1016/j.earscirev.2013.09.002

Maloszewski, P. y Zuber, A. (1982). Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. Models and their applicability. Journal of Hydrology, 57(3–4), 207-231. https://doi.org/10.1016/0022-1694(82)90147-0

Maloszewski, P. y Zuber, A. (2000). Manual on lumped parameter models used for the interpretation of environmental tracer data in groundwaters. International Atomic Energy Agency.

Martı́nez, D. E., Fourre, E., Londoño, O. Q., Jean-Baptiste, P., Galli, M. G., Dapoigny, A. y Grondona, S. I. (2016). Residence time distribution in a large unconfined–semiconfined aquifer in the Argentine Pampas using 3H/3He and CFC tracers. Hydrogeology Journal, 24(5), 1107-1120. https://doi.org/10.1007/s10040-016-1378-y

Martı́nez, D. E., Jiang, W., Matsumoto, T., Quiroz Londoño, O. M., Ritterbusch, F., Lexow, C., Yang, G. M., Bertolı́n, L., Mabry, J., Romeo, N., Zárate, M. y Lu, Z.-T. (2022). Kr-81 reveals one-million-year-old groundwater at the Atlantic coast of Argentina as a record of Mid-Pleistocene climate. Journal of Hydrology, 610, 127846. https://doi.org/10.1016/j.jhydrol.2022.127846

Martı́nez, D. E., Quiroz-Londoño, O. M., Basaldúa, A. D., Glok-Galli, M., Solana, X., Alcaraz, E. F. y Bertolin, L. (2024). The groundwater age of the Argentine aquifers: A review and paleoclimate insight. Groundwater for Sustainable Development, 28, 101402. https://doi.org/10.1016/j.gsd.2024.101402

Matsumoto, T., Zouari, K., Trabelsi, R., Hillegonds, D., Jiang, W., Lu, Z.-T., Mueller, P., Zappala, J. C., Araguás Araguas, L. J., Romeo, N. y Agoun, A. (2020). Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating. Earth and Planetary Science Letters, 531, 116120. https://doi.org/10.1016/j.epsl.2020.116120

Mazor, E. y Nativ, R. (1992). Hydraulic calculation of groundwater flow velocity and age: Examination of the basic premises. Journal of Hydrology, 138(1–4), 211-222. https://doi.org/10.1016/0022-1694(92)90165-R

McCallum, J. L., Cook, P. G., Simmons, C. T. y Werner, A. D. (2013). Bias of apparent tracer ages in heterogeneous environments. Groundwater, 51(4), 447-460. https://doi.org/10.1111/gwat.12052

Miglioranza, K., Martı́nez, D. E., Fourré, E., Grondona, S., Jean-Baptiste, P., Quiroz Londoño, O. M., González, M. y Silva Barni, M. (2015). Groundwater residence time based on 3H/3He determinations and agricultural pollutants in the Pampeano Aquifer (Argentina): Organochlorine compounds and nitrogen isotopes. En International Symposium on Isotope Hydrology: Revisiting Foundations and Exploring Frontiers (pp. 131-134). Organismo Internacional de Energía Atómica. http://hdl.handle.net/11336/162215

Mook, W. G. (2000). Environmental isotopes in the hydrological cycle: Principles and applications. (Vol. 1). UNESCO.

Newman, B. D., Osenbrück, K., Aeschbach-Hertig, W., Solomon, D. K., Cook, P. G., Różański, K. y Kipfer, R. (2010). Dating of ”young” groundwaters using environmental tracers: Advantages, applications, and research needs. Isotopes in Environmental and Health Studies, 46(3), 259-278. https://doi.org/10.1080/10256016.2010.514339

Osenbrück, K., Fiedler, S., Knöller, K., Weise, S. M., Sültenfuß, J., Oster, H. y Strauch, G. (2006). Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany. Water Resources Research, 42(12). https://doi.org/10.1029/2006WR004977

Panarello, H. O., Dapena, C. y Auge, M. (1995). Mechanisms of salinization of groundwater in the La Plata area, Buenos Aires, Argentina: Interpretation by means of environmental isotopes. International Atomic Energy Agency, (340), 13-27.

Plummer, L. N. y Busenberg, E. (2006). Chlorofluorocarbons in aquatic environments. En International Atomic Energy Agency (Ed.), Use of chlorofluorocarbons in hydrology: A guidebook (pp. 1-8). International Atomic Energy Agency.

Plummer, L. N. y Glynn, P. D. (2013). Radiocarbon dating in groundwater systems. En International Atomic Energy Agency (Ed.), Isotope methods for dating old groundwater (pp. 33-90). International Atomic Energy Agency.

Solomon, D. K. y Gilmore, T. E. (2024). Age Dating Young Groundwater: How to Determine Groundwater Age from Environmental Tracer Data. The Groundwater Project. https://doi.org/10.21083/LIIU2727

Solomon, D. K., Cook, P. G. y Plummer, L. N. (2006). Models of groundwater ages and residence times. En International Atomic Energy Agency (Ed.), Use of chlorofluoro-carbons in hydrology: A guidebook (pp. 73-88). International Atomic Energy Agency.

Suckow, A. (2014). The age of groundwater—Definitions, models and why we do not need this term. Applied Geochemistry, 50, 222-230. https://doi.org/10.1016/j.apgeochem.2014.04.016

Suckow, A., Raiber, M., Deslandes, A. y Gerber, C. (2018). Constraining conceptual groundwater models for the Hutton and Precipice aquifers in the Surat Basin through tracer data: Final Report. CSIRO.

Suckow, A., Deslandes, A., Raiber, M., Taylor, A. R., Davies, P., Gerber, C. y Leaney, F. (2020). Reconciling contradictory environmental tracer ages in multi-tracer studies to characterize the aquifer and quantify deep groundwater flow: An example from the Hutton Sandstone, Great Artesian Basin, Australia. Hydrogeology Journal, 28(1), 75-87. https://doi.org/10.1007/s10040-019-02042-8

Torgersen, T., Purtschert, R., Phillips, F. M., Plummer, L. N., Sanford, W. y Suckow, A. (2013). Defining groundwater age. En International Atomic Energy Agency (Ed.), Isotope methods for dating old groundwater (pp. 21-32). International Atomic Energy Agency.

Visser, A., Broers, H. P., Purtschert, R., Sültenfuß, J. y de Jonge, M. (2013). Groundwater age distributions at a public drinking water supply well field derived from multiple age tracers (85Kr, 3H/3He, and 39Ar). Water Resources Research, 49(11), 7778-7796. https://doi.org/10.1002/2013WR014012

Zalasiewicz, J., Waters, C. N., Summerhayes, C. P., Wolfe, A. P., Barnosky, A. D., Cearreta, A. y Williams, M. (2017). The Working Group on the Anthropocene: Summary of evidence and interim recommendations. Anthropocene, 19, 55-60. https://doi.org/10.1016/j.ancene.2017.09.001

Zuber, A. (1986). On the interpretation of tracer data in variable flow systems. Journal of Hydrology, 86(1–2), 45-57. https://doi.org/10.1016/0022-1694(86)90005-3

Zuo, R., Teng, Y., Wang, J., Hu, Q. y Guo, M. (2011). Experimental validation of retardation of tritium migration in the Chinese loess media. Water, Air, & Soil Pollution, 215(1–4), 497-506. https://doi.org/10.1007/s11270-010-0494-x

Downloads

Published

2025-10-24

Issue

Section

Educational resources and tutorials

How to Cite

Basaldua, A., Alcaraz, E., & Martínez, D. E. (2025). Groundwater age: Principles and application of environmental tracers. Geoacta, 47, e002. https://doi.org/10.24215/18527744e002