Determination of a static gravimetric geoid for the Santa Fe province, Argentina

Authors

  • Cecilia Cornero Área de Geodinámica y Geofísica - Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario- CONICET
  • Ayelen Pereira Área de Geodinámica y Geofísica - Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario- CONICET.
  • Mauricio Varela Sánchez Escuela de Ingeniería Topográfica, Universidad de Costa Rica
  • Ana Cristina Oliveira Cancoro De Matos Departamento de Ingeniería de Transportes, Escuela Politécnica, Universidad de San Pablo, BrasilCNGEO
  • María Cristina Pacino Área de Geodinámica y Geofísica - Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario- CONICET.

Keywords:

Geoid model, Gravimetry, GNSS

Abstract

At present, the determination of the geoid has become one of the fundamental Geodesy objectives, in order to provide a solution for the altimetric problem. This can be considered in the context of the terrestrial gravity field modeling, since all the calculation methods involve in one way or another its knowledge. This work consists in the calculation of four static gravimetric geoid models for the province of Santa Fe (Argentina) and its validation with terrestrial information from ellipsoidal heights (GNSS) and Leveling Networks (RN). The applied methodology in this investigation was the Remove-Restore technique, and various Global Geopotential Models (MGG) along with 39,771 terrestrial gravimetric observations were incorporated in the study. The calculation of the models was accomplished with the Canadian SHGEO software package (Stokes-Helmert Geoid Software), developed by the Department of Geodesy and Geomatic Engineer of the University of New Brunswick, Canada. The global geopotential models GO_CONS_GCF_2_DIR_R5 and EIGEN6C4, limited to degree and order 200 and 300, were used as a reference for the calculation. Also, the SAM3s_v2 digital terrain model and the DTU10 oceanic gravity model were used. The statistical analysis was performed with 100 points with double altimetric information (GNSS on leveling), resulting the model based on the GO_CONS_GCF_2_DIR_R5 up to grade and order 300 the one with greater consistency. This model also presented the minimum geoidal height mean values (NGNSS-RN) with respect to those obtained in the calculated model (N) (0.096m), and an RMS of the difference of 0.221 m.

Downloads

Download data is not yet available.

References

Andersen, O.B. (2010). The DTU10 Gravity field and Mean sea surface. In Second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, Alaska.

Andersen, O. B., P. Knudsen, R. Trimmer, (2005). Improved High Resolution Altimetric Gravity Field Mapping (KMS2002 Global Marine Gravity Field). A Window on the Future of Geodesy, Springer Berlin Heidelberg, 128: 326-31.

Blitzkow, D., A.C.O.C. Matos, I.O. Campos, A. Ellmann, P. Vanicek, M. C. Dos Santos, (2008). An attempt for an Amazon geoid model using Helmert gravity anomaly. In: Observing our Changing Earth. 1st ed. Springer-Verlag, 133: 187-194.

Bruinsma, S., C. Förste, O. Abrikosov, J.C. Marty, M.H. Rio, S. Mulet, S. Bonvalot, (2013). The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 41: 3607- 3612. doi: https://doi.org/10.1002/grl.50716

Bruinsma, S., C. Förste, O. Abrikosov, J.M. Lemoine, J.C. Marty, S. Mulet, M.H. Rio, S. Bonvalot, (2014). ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 41: 7508–7514. doi: https://doi.org/10.1002/2014GL062045

Corchete, V., M. C. Pacino, (2007). The first high-resolution gravimetric geoid for Argentina: GAR. Physics of the Earth and Planetary Interiors, (3-4)161: 177-83.

Cornero, C., A. Pereira, M.C. Pacino, L.R. Balparda, (2016). Comparación de modelos geopotenciales recientes en Argentina. Revista Geoacta de la Asociación Argentina de Geofísicos y Geodestas, 41(1): 87-97.

Ellmann, A., P. Vaníček, (2007). UNB application of Stokes-Helmert’s approach to geoid computation. Journal of Geodynamics, 43: 200-213.

Featherstone, W.E. (2003). Software for computing five existing types of deterministically modified integration kernel for gravimetric geoid determination. Computer & Geosciences, 29: 183-193.

Featherstone, W.E., M.G. Sideris, (1998). Modified kernels in spectral geoid determination: first results from Western Australia. In: Geodesy on the move, International Association of Geodesy Symposia, Springer Berlin Heidelberg, 119, 188-193.

Font G., M.C. Pacino, D. Blitzkow, C. Tocho, (1998). A Preliminary Geoid Model for Argentina. In: Geodesy on the Move, International Association of Geodesy Symposia. Springer Berlin Heidelberg, 119, 255-261.

Forsberg, R., M.G. Sideris, (1993). Geoid computations by the multi-band spherical FFT approach. Manuscripta geodaetica, 18: 82-9.

Förste, C., S. Bruinsma, O. Abrikosov, J.M. Lemoine, J.C. Marty, F. Flechtner, G. Balmino, F. Barthelmes, R. Biancale, (2014). EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. http://doi.org/10.5880/icgem.2015.1

Förste, C., R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. König, H. Neumayer, R. Biancale, J.M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, S. Esselborn, (2008). The GeoForschungsZentrum Potsdam/Groupe de Recherche de Géodésie Spatiale satellite‐ only and combined gravity field models: EIGEN‐ GL04S1 and EIGEN‐ GL04C. Journal of Geodesy, 82 (6): 331-346, doi: https://doi.org/10.1007/s00190-007-0183-8

Gemael, C. (1999). Introdução a Geodésia Física. Curitiba: 2ª ed. Editora UFPR, 302.

Hensley, S., R. Munjy, P. Rosen, (2001). Interferometric synthetic aperture radar. Digital elevation model technologies applications: the DEM user manual. Maune, D. F. (Ed.), ASPRS (The Imaging & Geospatial Information Society), cap. 6, 142–206.

Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, (1998). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861, NASA, Greenbelt, USA.

Lobianco, M.C.B. (2005). Determinação das alturas do geoide no Brasil. Tesis de doctorado, Escola Politecnica, Universidad de Sao Paulo, Brasil, 160.

Martinec, Z. (1993). Effect of lateral density variations of topographical masses in view of improving geoid model accuracy over Canada. Final Report of the contract DSS Nº 23244-2-4356. Geodetic Survey of Canada, Ottawa.

Matos, A.C.O.C., D. Blitzkow, (2008). Modelagem Digital de Terrenos (MDT) de 3" para a América do Sul. Disponible en: http://www.ptr.poli.usp.br/ltg/proj/proj26.htm Accedido en 2016.

Matos, A.C.O.C. (2005). Implementação de modelos digitais de terreno para aplicações na área de Geodésia e Geofísica na América do Sul. Tesis de doctorado, Escola Politécnica, Universidad de São Paulo, Brasil, 355.

Meissl, P. (1971). Preparations for the Numerical Evaluation of Second-Order Molodensky-Type Formulas. Ohio State University Report, 163, Columbus, USA.

Novák, P. (2000). Evaluation of gravity data for the Stokes–Helmert solution to the geodetic boundaryvalue problem. Technical Report Nº 207, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton.

Pacino M.C., G. Font, D. Blitzkow, (1998). Data processing for a Geoid Model in Argentina. In: Geodesy on the Move, International Association of Geodesy Symposia. Springer Berlin Heidelberg, 119, 288-293.

Piñón D.A., K. Zhang, S. Wu, S.R. Cimbaro, (2017). A New Argentinean Gravimetric Geoid Model: GEOIDEAR. In: International Association of Geodesy Symposia on Earth and Environmental Sciences for Future Generations. Springer Berlin, Heidelberg, 147, 53-62.

Piñón, D. (2016). Development of a Precise Gravimetric Geoid Model for Argentina. MSc. Thesis- School of Mathematical and Geospatial Sciences, College of Science Engineering and Health, RMIT University, Melbourne. P 129-135. https://researchbank.rmit.edu.au/eserv/rmit:161742/Pinon.pdf

Piñón, D., K. Zhang, S. Cimbaro, (2016). Modelo de Geoide Gravimétrico GEOIDEAR16, Encuentro Nacional de Investigadores de Agrimensura, 2-3 de Junio de 2016, http://ign.gob.ar/content/modelo-de-geoide-gravim%C3%A9trico-geoidear16?page=0%2C0%2C22

Reigber, C., P. Schwintzer, R. Stubenvoll, R. Schmidt, F. Flechtner, U. Meyer, R. König, H. Neumayer, C. Förste, F. Barthelmes, (2006). A high-resolution global gravity field model combining CHAMP and GRACE satellite mission and surface data: EIGEN-CG01C, Scientific Technical Report, Geoforschungszentrum (GFZ), Potsdam, Germany. ISSN 1610-0956.

Saleh, J., N.K. Pavlis, (2002). The development and evaluation of the global digital terrain model DTM2002. In: Proceedings of the 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece, 207-212.

Tocho, C., G. Font, M.G. Sideris, (2007). A new high-precision gravimetric geoid model for Argentina, In: Dynamic Planet, International Association of Geodesy Symposia, Springer Berlin Heidelberg, 130, 416-423.

United States Geological Survey (1999). GTOPO30 Documentation. Disponible en: https://webgis.wr.usgs.gov/globalgis/gtopo30/gtopo30.htm accedido en 2017.

Vaníček, P., J. Huang, P. Novák, S.D. Pagiatakis, M. Véronneau, Z. Martinec, W.E. Featherstone, (1999). Determination of the boundary values for the Stokes–Helmert problem, Journal of Geodesy, 73: 160–192.

Vaníček, P., A. Kleusberg, (1987). The Canadian geoid-Stokesian approach. Manuscripta Geodaetica, 12(2): 86-98.

Vaníček, P., L.E. Sjöberg, (1991). Reformulation of Stokes's theory for higher than second-degree reference field and modification of integration kernels. Journal of Geophysical Research, 96(B4): 6339–6529.

Villella, J.C., M.C. Pacino, (2010). Interpolación gravimétrica para el cálculo de los números geopotenciales de la red altimétrica de Argentina en zonas de alta montaña. Geoacta, 35: 13-26.

Wong, L., R. Gore (1969). Accuracy of geoid heights from modified Stokes kernels. Geophysical Journal International, 18(1): 81-91.

Published

2017-11-06

How to Cite

Cornero, C., Pereira, A., Varela Sánchez, M., Oliveira Cancoro De Matos, A. C., & Pacino, M. C. (2017). Determination of a static gravimetric geoid for the Santa Fe province, Argentina. Geoacta, 42(2), 82–95. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13600

Issue

Section

Scientific work