Respuesta de geófonos a campos electromagnéticos

Authors

  • Patricia M. Gauzellino Depto. de Geofísica Aplicada, Fac. de Cs. Astro. y Geofísicas, UNLP
  • Fabio I. Zyserman CONICET, Depto. de Geofísica Aplicada, Fac. de Cs. Astro. y Geofísicas, UNLP
  • Federico G. E. Späth Fac. de Cs. Astro. y Geofísicas, UNLP

Keywords:

electroseismic, Maxwell equations, Biot equations, poro-viscoelastic medium

Abstract

Electro-osmosis in saturated porous media is the physical phenomenon in which an electrical potential variation gives rise to fluid flow. The reciprocal phenomenon, called electro-filtration effect, is an electrical charge flux originated by pressure gradients in the pore fluid. The quotient between electrical potential and pressure gradient represents the electrokinetic coupling coefficient. In 1999 a proof field was performed, where seismic waves were generated by electromagnetic source. In this work it is explained why happen these phenomena. The equations that govern the coupled seismic and electromagnetic wavefields are presented and the transport coefficients (electrical conductivity, dynamic permeability and electrokinetic coupling coefficient) are analyzed. Some assumptions on the model allow solve a simplified set of equations where Maxwell's equations are decoupled from Biot's equations. For the Maxwell's equations it is possible to separate the electromagnetic fields in primary and secondary parts. The former can be found analytically, while to find the latter a numerical procedure is employed. Dissipative effects in porous media can be included by using complex viscoelastic moduli in space-frequency domain. Also, it is important notice that pressure gradients in the pore fluid are correctly represented if the grid points are calculated using diffusive skin depth of the Biot slow wave. Numerical examples illustrate the capabilities of the modeling for detecting reservoir fluid contacts. 

Downloads

Download data is not yet available.

References

Biot M. A., 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Amer., 28: 168-171.

Biot M. A., 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High frequency range. J. Acoust. Soc. Amer., 28: 179-191.

Biot M. A., 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33: 1482-1498.

Blau L. W. y Statham L., 1936. Method and apparatus for seismic-electric prospecting, US Patent No 2: 054-067.

Butler K. E., Russell R. D., Kepic A. W. y Maxwell M., 1996. Measurement of the seismoelectric response from a shallow boundary, Geophysics, 61: 1769-1996.

Gassmann F., 1951. Über die elastizität poröser medien (On the elasticity of porous media). Vierteljahrsschrift der Naturforschenden Gessellschaft in Zurich, 96: 1-23.

Gauzellino P. M., Zyserman F. I. y Santos J. E., 2001. Análisis del comportamiento de algoritmos paralelos de elementos finitos con descomposición de dominio en aplicaciones geofísicas, Mecánica Computacional, 20: 474-481.

Gauzellino P. M., Zyserman F. I. y Santos J. E., 2009. Nonconforming element methods for the three dimensional Helmholtz equation: iterative domian decomposition or global solution ?, J. Comp. Acoustic, 17 (2) (en prensa).

Haines S. H. y Pride S. R., 2006. Seismoelectric numerical modeling on a grid, Geophysics, 71 (6): 57-65.

Han Q. y Z. Wang Z., 2001. Time-domain simulation of SH-wave-induced electromagnetic field in heterogeneous porous media: A fast finite-element algorithm, 66 (2): 448-461.

Ivanov A., 1939. Effect of electrization of earth layers by elastic waves passing through them, Comptes Rendus (Doklady) de l’Academie des Sciences de L’URRS, 24:42-45.

Johnson D. L., Koplik J. y Dashen R.1987. Theory of dynamic permeability and tortuosity in fluidsaturated porous media,J. Fluid Mechanics, 176: 379-402.

Liu H. P., Anderson D. L. y Kanamori H., 1976. Velocity dispersion due to anelasticity; implications for seismology and mantle composition, Geophys. J. R. Astr. Soc., l47: 41-58.

Long L. T. y Rivers W. K., 1975. Field measurements of the electroseismic response, Geophysics, 40 (2): 233-245.

Lorne B., Perrier F. y Avouac J., 1999. Streaming Potential measurements 1. Properties of the electrical double layer from crushed rock samples, Journal Geophysical Research, 104: 17857- 17877.

Maxwell M., Russell R. D., Kepic A. W. y Butler K. E., 1992. Electromagnetic responses from seismically excited targets B: non-piezoelectric phenomena, Expl. Geophys., 23: 201-208.

Pain C., Saunders J., Worthington M., Singer J., Stuart-Bruges W., Mason G. y Goddard A., 2005. A mixed finite-element method for solving the poroelatic Biot equations with electrokinetic coupling, Geophys. J. Int., 160: 592-608.

Pride S. R. y Morgan F., 1991. Electrokinetic dissipation induced by seismic waves, Geophysics, 56: 914-925

Pride S. R., 1994. Governing equations for the coupled electromagnetics and acoustics of porous media, Physical Review B, 50: 15678-15696.

Pride S. y Haartsen M., 1996. Electroseismic wave properties, J. Acoust. Soc. Amer., 100: 1301-1315.

Pride S. y Garambois S., 2001. The role of Biot slow waves in electroseismic wave phenomena, J. Acoust. Soc. Amer., 111: 697-706.

Revil A., Schwaeger H., Cathles {III} L. M. y Manhardt P., 1999. Streaming potential in porous media, 2. Theory and application to geothermal systems, Journal Geophysical Research, 104: 20033- 20048.

Santos J. E., 1998. Global and domain-decomposed mixed methods for the solution of Maxwell’s equation with application to magnetotellurics, Num. Meth. For Partial Diff. Equations, 14: 263-280.

Santos J. E. y Sheen D., 2007. Finite element methods for the simulation of waves in composite saturated poroviscoelastic materials, SIAM, J. Numer. Anal., 45 (1): 389-420.

Thompson R. R., 1939. A note on the seismic-electric effect. Geophysics, 4: 102-105.

Thompson A. H. y Gist G., 1993. Geophysical applications of electrokinetic conversion, The Leading Edge, 12: 1169-1173.

Thompson A. H. y Gist G., 1999. Geophysical prospecting. US Patent No 5: 877-995.

Thompson A. H., 2005. Electromagnetic-to-seismic conversion: Successful developments suggest viable applications in exploration and production. 75th SEG Annual Meeting Expanded Abstracts, SEG, Houston, USA: 554.

Thompson A. H., Hornbostel S., Burns J., Murray T., Raschje R., Wride J., McCammon P., Sumner J., Haake G., Bixby M., Ross W., White B. S., Zhou M. y Peczak P, 2007. Field tests of electroseismic hydrocarbon detection, Geophysics, 72 (1): N1-N9.

White B. S., 2005. Asymptotic theory of electroseismic prospecting, SIAM J. Appl. Math., 65 (4): 1443-1462.

White B. S. y Zhou M., 2006. Electroseismic prospecting in layered media, SIAM J. Appl. Math.,67 (1): 69-98.

Zyserman F. I., Guarracino L. y Santos J. E., 1999. A hybridized mixed finite element domain decomposed method for two-dimensional magnetotelluric modelling, Earth, Planets and Space, 51: 297-306.

Zyserman F. I., Gauzellino P. M. y Santos, J. E., 2003. Dispersion analysis of a non-conforming finite element method for the Helmholtz and elastodynamic equations, Int. J. Numer. Meth. Engng., 58: 1381-1395.

Zyserman F. I. y Gauzellino P. M., 2005. Dispersion analysis of a nonconforming finite element method for the three dimensional scalar and elastic wave equations, Finite elements in analysis and design, 41: 1309-1326.

Zyserman F. I., Gauzellino P. M. y Santos, J. E., 2009. Finite element modeling of SHTE and PSVTM electroseismic, CCAM-2009-02-MATH, http://CCAM.math.purdue.edu/preprints

Published

2010-11-08

How to Cite

Gauzellino, P. M., Zyserman, F. I., & Späth, F. G. E. (2010). Respuesta de geófonos a campos electromagnéticos. Geoacta, 35(2), 54–66. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13676

Issue

Section

Scientific work