Seismological contributions to the understanding of active volcanoes in South America and Antarctica
Keywords:
Seismology, active volcanoes, characterization of the subsurface, monitoringAbstract
The development of comprehensive knowledge about the behavior of an active volcanic system, along with the elaboration of effective early warning alerts for potential events with negative impacts on nearby populations, constitutes the major challenge of contemporary volcanology. In order to accomplish this aim, it is essential to develop a detailed understanding of the location and physical state of the components constituting the subsurface, particularly the structural configuration in which the conduit system —responsible for transporting fluids (water, magma, and gases) to the surface— is situated. Equally crucial is the evaluation of the dynamics resulting from the interaction of these components over time. In recent years, seismologists from the Facultad de Ciencias Astronómicas y Geofísicas (Universidad Nacional de La Plata) and the Observatorio Argentino de Vigilancia Volcánica (Servicio Geológico y Minero Argentino), in collaboration with local and international institutions, have implemented diverse methodologies contributing to improve the knowledge of the structure of the active volcanic systems of interest, as well as their temporal evolution. This article compiles a selection of these contributions to the understanding of volcanoes located in South American and Antarctic territories.
Downloads
References
Almeida Vaca, M., Bablon, M., Andrade, S. D., Hidalgo, S., Quidelleur, X., Vasconez, F. J., Müller, A. V., Lahitte, P. y Samaniego, P. (2023). New geological and geochronological constraints on the evolution of the Cotacachi - Cuicocha volcanic complex (Ecuador). Journal of South American Earth Sciences, 128, 104489. https://doi.org/https://doi.org/10.1016/j.jsames.2023.104489
Alvarado, A., Ruiz, M., Mothes, P., Yepes, H., Segovia, M., Vaca, M., Ramos, C., Enrı́quez, W., Ponce, G., Jarrı́n, P., Aguilar, J., Acero, W., Vaca, S., Singaucho, J. C., Pacheco, D. y Córdova, A. (2018). Seismic, volcanic, and geodetic networks in Ecuador: Building capacity for monitoring and research. Seismological Research Letters, 89(2A), 432–439. https://doi.org/10.1785/0220170229
Amigo, A. (2021). Volcano monitoring and hazard assessments in Chile. Volcanica, 4(S1), 1–20. https://doi.org/10.30909/vol.04.S1.0120
Badi, G., Hipatia, V.,Olivera Craig, V. H., Casas, J., Martı́nez, V. y Garcı́a, S. (2022). Evolución de las señales de largo perı́odo durante el proceso eruptivo del complejo volcánico Planchón-Peteroa en 2018 [resumen]. XXI Congreso Geologico Argentino. Puerto Madryn, Argentina. http://dx.doi.org/10.13140/RG.2.2.29409.48488
Bartolini, S., Geyer, A., Martı́, J., Pedrazzi, D. y Aguirre-Dı́az, G. (2014). Volcanic hazard on Deception Island (South Shetland Islands, Antarctica). Journal of Volcanology and Geothermal Research, 285, 150–168. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2014.08.009
Boero, E. (2023). Iluminando la estructura interna de Galápagos mediante Interferometrı́a Sı́smica [Tesis de licenciatura, Universidad Nacional de La Plata]. http://sedici.unlp.edu.ar/handle/10915/154746
Brenguier, F., Clarke, D., Aoki, Y., Shapiro, N. M., Campillo, M. y Ferrazzini, V. (2011). Monitoring volcanoes using seismic noise correlations. Comptes Rendus Geoscience, 343(8-9), 633–638. https://doi.org/https://doi.org/10.1016/j.crte.2010.12.010
Bueno, A., Balestriero, R., De Angelis, S., Benı́tez, M. C., Zuccarello, L., Baraniuk, R., Ibáñez, J. M. y de Hoop, M. V. (2021). Recurrent scattering network detects metastable behavior in polyphonic seismo-volcanic signals for volcano eruption forecasting. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–23. https://doi.org/https://doi.org/10.1109/TGRS.2021.3134198
Buurman, H., West, M. E., Power, J. y Coombs, M. (2006). Seismic precursors to volcanic explosions during the 2006 eruption of Augustine volcano.En J.A. Power, M.L. Coombs y J.T. Freymueller (Eds.), The 2006 Eruption of Augustine Volcano, Alaska (pp. 41–57). U.S. Geological Survey Professional Paper 1769.
Carbajal, F. J., Vigide, N., Badi, G., Agusto, M., Carballo, F. y Garcı́a, S. (2025). Seasonal control on phreatic activity of the crater lake of Copahue volcano during the 2018–2022 eruptive cycle. Bulletin of Volcanology, 87(6), 1–20. https://doi.org/https://doi.org/10.1007/s00445-025-01826-z
Casas, J., Badi, G., Manassero, M., Gomez, M., Draganov, D. y Ruzzante, J. (2014). Caracterización de la actividad sismovolcánica en el volcán Peteroa, Mendoza [ponencia]. XIX Congreso Geológico Argentino. Córdoba, Argentina.
Casas, J., Badi, G., Olivera Craig, V. H., Garcı́a, S. y Draganov, D. (2022). Identificación de rasgos pre-eruptivos en variaciones de velocidad sı́smica en el complejo volcánico Planchón-Peteroa (Argentina-Chile) [resumen]. XXI Congreso Geológico Argentino. Chubut, Argentina.
Casas, J., Draganov, D., Badi, G., Manassero, M., Olivera Craig, V., Franco Marı́n, L., Gómez, M. y Ruigrok, E. (2019). Seismic interferometry applied to local fracture seismicity recorded at Planchón-Peteroa volcanic complex, Argentina-Chile. Journal of South American Earth Sciences, 92, 134–144. https://doi.org/https://doi.org/10.1016/j.jsames.2019.03.012
Casas, J. A., Badi, G. A., Franco, L. y Draganov, D. (2020). Seismic interferometry applied to regional and teleseismic events recorded at Planchón-Peteroa volcanic complex, Argentina-Chile. Journal of Volcanology and Geothermal Research, 393, 106805. https://doi.org/10.1016/j.jvolgeores.2020.106805
Casas, J. A., Badi, G. A., Mikesell, T. D., Garcia, S. E. y Draganov, D. (2024). Single-station multiparametric seismic monitoring of Copahue volcano, Argentina–Chile (2018–2023). Seismological Research Letters, 95(5), 2637–2650. https://doi.org/10.1785/0220240074
Casas, J. A., Magrini, F., Kaus, B., Badi, G., Ruiz, M. Z., Ebinger, C., Draganov, D. y De Siena, L. (2022). S-wave velocity structure at the Galápagos archipiélago (Ecuador) using ambient seismic noise. EGU General Assembly Conference Abstracts, EGU22–2846. https://doi.org/10.5194/egusphere-egu22-2846
Casas, J. A., Mikesell, T., Draganov, D., Lepore, S., Badi, G., Franco, L. y Gomez, M. (2018). Shallow S-wave velocity structure from ambient seismic noise at Planchón-Peteroa volcanic complex, Argentina-Chile. Bulletin of the Seismological Society of America, 108(4), 2183–2198. https://doi.org/10.1785/0120170281
Durán, A. C. (2019). Monitoreo del Complejo Volcánico Cotacachi-Cuicocha mediante interferometrı́a sı́smica de ruido sı́smico ambiental [Tesis de licenciatura, Universidad Nacional de La Plata]. http://sedici.unlp.edu.ar/handle/10915/168145
Elissondo, M. y Farı́as, C. (2024). Riesgo volcánico relativo en territorio argentino. Servicio Geológico Minero Argentino, Instituto de Geologı́a y Recursos Minerales. https://repositorio.segemar.gob.ar/handle/308849217/4417
Endo, E. T. y Murray, T. (1991). Real-time seismic amplitude measurement (RSAM): A volcano monitoring and prediction tool. Bulletin of Volcanology, 53(7), 533–545. https://doi.org/10.1007/BF00298154
Esri. (2025). ArcGIS Pro: Geographic Information System Software. Version 3.x, Esri Inc., Redlands, CA, USA. https://www.esri.com/en-us/arcgis/products/arcgis-pro/
Farias, C., Lazo, J., Basualto, D., Saavedra, M., Muñoz-Quiroz, F., Zuñiga-Urrea, L., Martı́nez-Bravo, R., Huentenao-Inostroza, I. y Saéz-Opazo, R. (2023). One decade of b-value variations from volcano-tectonic seismicity as an early indicator of episodes of crisis in a volcano: the case of Copahue, Southern Andes. Frontiers in Earth Science, 11, 1181177. https://doi.org/10.3389/feart.2023.1181177
Garcia, S. y Badi, G. (2021). Towards the development of the first permanent volcano observatory in Argentina. Volcanica, 4(S1), 21–48. https://doi.org/10.30909/vol.04.S1.2148
Garcı́a, S., Badi, G., Preatoni, V., Olivera Craig, V. H., Carbajal, F., Acosta, G., Casas, A. y Vigide, N. (2023). Avances en el monitoreo volcánico instrumental en la República Argentina. Instituto Geológico, Minero y Metalúrgico.
Garcı́a, S., Badi, G., Preatoni, V., Casas, J. y Acosta, G. (11-17 de febrero de 2024). Instalación de la primera red argentina de monitoreo volcánico permanente en la Isla Decepción. Proceedings of the XII Cities on volcanoes. Guatemala.
Gunkel, G., Beulker, C., Grupe, B. y Viteri, F. (2008). Hazards of volcanic lakes: analysis of lakes Quilotoa and Cuicocha, Ecuador. Advances in Geosciences, 14, 29–33. https://doi.org/10.5194/adgeo-14-29-2008
Haller, M. y Risso, C. (2011). The eruption of the Peteroa volcano (35°15’s, 70°18’o) on 4th september, 2010. Revista de la Asociación Geológica Argentina, 68(2), 295–305.
Harpp, K. S. y Geist, D. J. (2018). The evolution of Galápagos volcanoes: An alternative perspective. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00050
Hidalgo, S., Bernard, B., Mothes, P., Ramos, C., Aguilar, J., Andrade, D., Samaniego, P., Yepes, H., Hall, M., Alvarado, A., Segovia, M., Ruiz, M., Ramón, P., Vaca, M. y IG-EPN staff. (2023). Hazard assessment and monitoring of ecuadorian volcanoes: challenges and progresses during four decades since IG-EPN foundation. Bulletin of Volcanology, 86(1), 4. https://doi.org/10.1007/s00445-023-01685-6
Instituto Geográfico Nacional. (2025). Isla Decepcion - Antártida. IGN. Recueperado el 1 de mayo de 2025 de https://www.ign.es/web/isla-decepcion-antartida
Koulakov, I. y Shapiro, N. (2014). Seismic Tomography of Volcanoes, 1–18. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_51-1
Kumagai, H., Nakano, M., Maeda, T., Yepes, H., Palacios, P., Ruiz, M., Arrais, S., Vaca, M., Molina, I. y Yamashima, T. (2010). Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches. Journal of Geophysical Research: Solid Earth, 115(B8). https://doi.org/10.1029/2009JB006889
Martı́nez, V. L., Titos, M., Benı́tez, C., Badi, G., Casas, J. A., Craig, V. H. O. y Ibáñez, J. M. (2021). Advanced signal recognition methods applied to seismo-volcanic events from Planchon Peteroa volcanic complex: Deep neural network classifier. Journal of South American Earth Sciences, 107, 103115. https://doi.org/10.1016/j.jsames.2020.103115
McGuire, B., Kilburn, C. R. y Murray, J. (2022). Monitoring active volcanoes: strategies, procedures and techniques. Taylor & Francis. https://doi.org/10.4324/9781003327080
McNutt, S. R. (2005). Volcanic seismology. Annual Review of Earth and Planetary Sciences, 33, 461–491. https://doi.org/10.1146/annurev.earth.33.092203.122459
Melián, G. V., Toulkeridis, T., Pérez, N. M., Hernández, P. A., Somoza, L., Padrón, E., Amonte, C., Alonso, M., Asensio-Ramos, M. y Cordero, M. (2021). Geochemistry of water and gas emissions from Cuicocha and Quilotoa volcanic lakes, Ecuador. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.741528
Melnick, D., Folguera, A. y Ramos, V. A. (2006). Structural control on arc volcanism: The Caviahue–Copahue complex, central to Patagonian Andes transition (38°s). Journal of South American Earth Sciences, 22(1), 66–88. https://doi.org/10.1016/j.jsames.2006.08.008
Naranjo, J. A. y Haller, M. J. (2002). Erupciones holocenas principalmente explosivas del volcán Planchón, Andes del Sur (35 15’s). Revista Geológica de Chile, 29(1), 93–113. http://dx.doi.org/10.4067/S0716-02082002000100006
Naranjo, J. A., Haller, M. J. F., Ostera, H. A., Pesce, A. H. y Sruoga, P. (1999). Geologı́a y peligros del complejo volcánico Planchón-Peteroa, Andes del Sur (35o15 s), región del Maule, Chile-Provincia de Mendoza, Argentina. Servicio Nacional de Geologı́a y Minerı́a (Chile).
Naranjo, J. A. y Polanco, E. (2004). The 2000 AD eruption of Copahue volcano, southern Andes. Revista Geológica de Chile, 31(2), 279–292. https://doi.org/10.4067/S0716-02082004000200007
Observatorio Argentino de Vigilancia Volcánica. (2025). Reportes de actividad volcánica. oavv. Recuperdado el 1 de mayo de 2025 de https://oavv.segemar.gob.ar/monitoreo-volcanico/
Olivera Craig, V. H. (2017). Relocalización de eventos volcanotectónicos en el CVPP mediante optimización de la identificación de arribos y localización conjunta [Tesis de licenciatura, Universidad Nacional de La Plata]. http://sedici.unlp.edu.ar/handle/10915/136968
Pearce, R., de la Muela, A. S., Moorkamp, M., Hammond, J., Mitchell, T. M., Cembrano, J., Vargas, J. A., Meredith, P. G., Iturrieta, P., Pérez-Estay, N., Marshall, N., Yañez, G., Griffith, A., Marquardt, C., Smith, J., Stanton-Yonge, A. y Núñez, R. (2019). Interaction between hydrothermal fluids and fault systems in the in the Southern Andes revealed by magnetotelluric and seismic data. ESS Open Archive. https://doi.org/10.1002/essoar.10501143.1
Ramon, P., Vallejo, S., Mothes, P., Andrade, D., Vásconez, F., Yepes, H., Hidalgo, S. y Santamarı́a, S. (2021). Instituto Geofı́sico – Escuela Politécnica Nacional, the ecuadorian seismology and volcanology service. Volcanica, 4(S1), 93–112. https://doi.org/10.30909/vol.04.S1.93112
Reddin, E., Ebmeier, S. K., Rivalta, E., Bagnardi, M., Baker, S., Bell, A. F., Mothes, P. y Aguaiza, S. (2023). Magmatic connectivity among six Galápagos volcanoes revealed by satellite geodesy. Nature Communications, 14(1), 6614. https://doi.org/10.1038/s41467-023-42157-x
Rey-Devesa, P., Benı́tez, C., Prudencio, J., Gutiérrez, L., Cortés-Moreno, G., Titos, M., Koulakov, I., Zuccarello, L. y Ibáñez, J. M. (2023). Volcanic early warning using Shannon entropy: Multiple cases of study. Journal of Geophysical Research: Solid Earth, 128(6), e2023JB026684. https://doi.org/10.1029/2023JB026684
Romero, J. E., Aguilera, F., Delgado, F., Guzmán, D., Van Eaton, A. R., Luengo, N., Caro, J., Bustillos, J., Guevara, A., Holbik, S., Tormey, D. y Zegarra, I. (2020). Combining ash analyses with remote sensing to identify juvenile magma involvement and fragmentation mechanisms during the 2018/19 small eruption of Peteroa volcano (Southern Andes). Journal of Volcanology and Geothermal Research, 402, 106984. https://doi.org/10.1016/j.jvolgeores.2020.106984
Ruigrok, E., Draganov, D., Gomez, M., Ruzzante, J., Torres, D., Lopes Pumarega, I., Barbero, N., Ramires, A., Castano Ganan, A., van Wijk, K. y Wapenaar, K. (2012). Malargüe seismic array: Design and deployment of the temporary array. The European Physical Journal Plus, 127, 126. https://doi.org/10.1140/epjp/i2012-12126-7
Ruiz, A., Samaniego, P., von Hillebrandt-Andrade, C., Hall, M., Ruiz, M., Mothes, P. y Macias, C. (2013). Multiparameter monitoring techniques for reducing volcanic risk from Cuicocha crater lake, Ecuador. AGU Spring Meeting Abstracts, 2013, V44A–08.
Ruiz, M. Z., Civilini, F., Ebinger, C. J., Oliva, S. J., Ruiz, M. C., Badi, G., La Femina, P. C. y Casas, J. A. (2022). Precursory signal detected for the 2018 Sierra Negra volcanic eruption, Galápagos, using seismic ambient noise. Journal of Geophysical Research: Solid Earth, 127(3). https://doi.org/10.1029/2021JB022990
Sallarès, V. y Charvis, P. (2003). Crustal thickness constraints on the geodynamic evolution of the Galápagos volcanic province. Earth and Planetary Science Letters, 214(3), 545–559. https://doi.org/10.1016/S0012-821X(03)00373-X
Scarpa, R. y Gasparini, P. (1996). A Review of Volcano Geophysics and Volcano-Monitoring Methods, 3–22. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_1
Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H. y Stix, J. (2015). The encyclopedia of volcanoes. Elsevier.
Smellie, J. (2001). Lithostratigraphy and volcanic evolution of Deception Island, South Shetland Islands. Antarctic Science, 13(2), 188–209. https://doi.org/10.1017/S0954102001000281
Sparks, R., Biggs, J. y Neuberg, J. (2012). Monitoring volcanoes. Science, 335(6074), 1310–1311. https://doi.org/10.1126/science.1219485
Stephens, C. D., Chouet, B. A., Page, R. A., Lahr, J. C. y Power, J. A. (1994). Seismological aspects of the 1989–1990 eruptions at Redoubt volcano, Alaska: The SSAM perspective. Journal of Volcanology and Geothermal Research, 62(1), 153–182. https://doi.org/10.1016/0377-0273(94)90032-9
Tepp, G., Ebinger, C. J., Ruiz, M. y Belachew, M. (2014). Imaging rapidly deforming ocean island volcanoes in the western Galápagos archipiélago, Ecuador. Journal of Geophysical Research: Solid Earth, 119(1), 442–463. https://doi.org/10.1002/2013JB010227
Titos, M., Bueno, A., Garcı́a, L. y Benı́tez, C. (2018). A deep neural networks approach to automatic recognition systems for volcano-seismic events. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1533–1544. https://doi.org/10.1109/JSTARS.2018.2803198
Tormey, D., Frey, F. y López-Escobar, L. (1989). Geologic history of the active azufre - Planchon-Peteroa volcanic center (35o15’s, southern Andes) with implications for the development of compositional gaps. Revista de la Asociación Geológica Argentina, XLIV, 420–430.
Vasconez, F. J., Ramón, P., Hernandez, S., Hidalgo, S., Bernard, B., Ruiz, M., Alvarado, A., La Femina, P. y Ruiz, G. (2018). The different characteristics of the recent eruptions of Fernandina and Sierra Negra volcanoes (Galápagos, Ecuador). Volcanica, 1(2), 127–133. https://doi.org/10.30909/vol.01.02.127133
Waldhauser, F. y Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006
Wapenaar, K., Draganov, D., Robertsson, J. O. y Pelissier, M. A. (2008). Seismic Interferometry: History and Present Status. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801924
Wapenaar, K., Draganov, D., Snieder, R., Campman, X. y Verdel, A. (2010). Tutorial on seismic interferometry: Part 1 — basic principles and applications. Geophysics, 75(5), 75A195–75A209. https://doi.org/10.1190/1.3457445
Wassermann, J. (2012). Volcano seismology. New manual of seismological observatory practice 2 (NMSOP-2), 1–77. Deutsches GeoForschungsZentrum GFZ.
Yun, S., Segall, P. y Zebker, H. (2006). Constraints on magma chamber geometry at Sierra Negra volcano, Galápagos islands, based on InSAR observations. Journal of Volcanology and Geothermal Research, 150(1), 232–243. https://doi.org/10.1016/j.jvolgeores.2005.07.009
Downloads
Published
Issue
Section
License
Copyright (c) 2025 José Augusto Casas, Gabriela Badi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Starting in 2022 (Vol. 43 number 2) articles will be published in the journal under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0)
According to these terms, the material can be shared (copied and redistributed in any medium or format) and adapted (remixed, transformed and created from the material another work), provided that a) the authorship and the original source of its publication (journal and URL of the work), b) is not used for commercial purposes and c) the same license terms are maintained.
Prior to this date the articles were published in the journal under a Creative Commons Attribution license (CC BY)
In both cases, the acceptance of the originals by the journal implies the non-exclusive assignment of the economic rights of the authors in favor of the editor, who allows reuse, after editing (postprint), under the license that corresponds according to the edition.
Such assignment means, on the one hand, that after its publication (postprint) in the GEOACTA Magazine of the Association of Geophysicists and Geodesists, the authors can publish their work in any language, medium and format (in such cases, it is requested that it be recorded that the material was originally published in this journal); on the other, the authorization of the authors for the work to be harvested by SEDICI, the institutional repository of the National University of La Plata, and to be disseminated in the databases that the editorial team considers appropriate to increase visibility. of the publication and its authors.
Likewise, the journal encourages the authors so that after their publication in the Journal of the Association of Geophysicists and Geodesists, they deposit their productions in other institutional and thematic repositories, under the principle that offering society scientific production and Unrestricted academic scholarship contributes to a greater exchange of global knowledge.












