Importancia de la proporción cobre/zinc: una aproximación al análisis de los efectos de la suplementación in vitro sobre el genoma

Autores/as

  • Melisa Mantella IGEVET. Facultad de Ciencias Veterinarias. Universidad Nacional de La Plata. La Plata. Argentina. Consejo Nacional de Investigaciones científicas y Técnicas (CONICET). Buenos Aires. Argentina. https://orcid.org/0000-0003-3984-3358
  • Rocío Gambaro IGEVET. Facultad de Ciencias Veterinarias. Universidad Nacional de La Plata. La Plata. Argentina. Consejo Nacional de Investigaciones científicas y Técnicas (CONICET). Buenos Aires. Argentina. https://orcid.org/0000-0001-8376-4740
  • Analía Seoane IGEVET. Facultad de Ciencias Veterinarias. Universidad Nacional de La Plata. La Plata. Argentina. Consejo Nacional de Investigaciones científicas y Técnicas (CONICET). Buenos Aires. Argentina. https://orcid.org/0000-0001-9908-538X
  • Gisel Padula IGEVET. Facultad de Ciencias Veterinarias. Universidad Nacional de La Plata. La Plata. Argentina. Consejo Nacional de Investigaciones científicas y Técnicas (CONICET). Buenos Aires. Argentina. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata. La Plata. Argentina. https://orcid.org/0000-0001-5390-0043

DOI:

https://doi.org/10.24215/18536387e052

Palabras clave:

micronutrientes, sangre periférica, daño en el ADN

Resumen

El cobre (Cu) y el zinc (Zn) son micronutrientes esenciales que participan en numerosas actividades metabólicas. La proporción Cu/Zn resulta más importante aún que la concentración individual de cada uno de éstos y es uno de los parámetros asociados con la reducción de la homeostasis frente a un evento desestabilizador. Debido a que las deficiencias y los excesos de micronutrientes no se detectan por técnicas antropométricas, es necesario el diseño de  modelos experimentales que permitan investigar sus efectos y aporten información para implementar políticas de prevención sanitarias. Por dichos motivos, el objetivo del presente trabajo fue analizar el efecto de la suplementación combinada con Cu y Zn sobre el genoma teniendo en cuenta la proporción entre ambos micronutrientes, en un modelo experimental con sangre periférica cultivada in vitro. Se llevó a cabo el ensayo cometa y se determinó el índice de daño (ID). Las células fueron cultivadas durante 5 días y se realizaron 8 tratamientos: 3 combinaciones con sulfato de zinc (SO4Zn) y de cobre (SO4Cu) y sus respectivos controles. Para el análisis estadístico se utilizaron los ensayos de ANOVA y el método LSD de Fisher. Se observaron frecuencias de ID significativamente aumentadas a medida que la proporción Cu/Zn se incrementó. Dado que el Zn y el Cu juegan un rol fundamental tanto en el mantenimiento de la estabilidad genómica como en el crecimiento de los niños, el desarrollo de enfermedades y el proceso de envejecimiento, es fundamental determinar los valores adecuados de ingesta diaria combinada de ambos micronutrientes.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Aguirre, P. (2005). Contribución para el diseño de una política alimentaria. Centro interdisciplinario para el estudio de las políticas públicas (CIEPP).

Aguirre, P. (2010). La comida en los tiempos del ajuste. En S. Torrado (dir.), El costo social del ajuste (Argentina 1976-2002). Tomo II (pp. 51-102). Buenos Aires: Edhasa.

Aksu, B Y, Hasbal, C, Himmetoglu, S, Dincer, Y, Koc, E E, Hatipoglu, S, y Akcay, T (2010). Leukocyte DNA damage in children with iron deficiency anemia: effect of iron supplementation. European Journal of Pediatrics, 169(8), 951-956. https://doi.org/10.1007/s00431-010-1147-1

Ambrosone, C. B., Freudenheim, J. L., Thompson, P. A., Bowman, E., Vena, J. E., Marshall, J. R., y Shields, P. G. (1999). Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer research, 59(3), 602-606

Antwi-Boasiako, C., Dankwah, G. B., Aryee, R., Hayfron-Benjamin, C., Doku, A., N’guessan, B. B., y Campbell, A. D. (2019). Serum iron levels and copper-to-zinc ratio in sickle cell disease. Medicina, 55(5), 180. https://doi.org/10.3390/medicina55050180

Bergel Sanchís, M. L., Cesani, M. F. y Oyhenart, E.E. (2017). Malnutrición infantil e inseguridad alimentaria como expresión de las condiciones socio-económicas familiares en Villaguay, Argentina (2010-2012). Un enfoque biocultural. Población y Salud en Mesoamérica, 14(2), 60-85. https://doi.org/10.15517/psm.v14i2.27305

Böckerman, P., Bryson, A., Viinikainen, J., Viikari, J., Lehtimäki, T., Vuori, E., y Pehkonen, J. (2016). The serum copper/zinc ratio in childhood and educational attainment: a population-based study. Journal of Public Health, 38(4), 696-703. https://doi.org/10.1093/pubmed/fdv187

Borrás, G. y García, J. (2013). Políticas alimentarias en Argentina, derechos y ciudadanía. Revista Interdisciplinaria de Estudios Agrarios, 39, 111-136.

Carmuega, E. (1999). La calidad de la dieta de los dos primeros años de vida. En: A. O´Donnell y E.

Carmuega. Hoy y Mañana. Salud y calidad de vida de la Niñez Argentina. Buenos Aires: CESNI.

Carrero, C., Leal, J., Mavo, L., Parody, A., Granadillo, V., y Fernández, D. (2016). Retinol y zinc séricos en escolares sometidos a suplementación nutricional de la Escuela Bolivariana” Catatumbo”, Maracaibo, Estado Zulia. Revista Científica General José María Córdova, 14(18), 324-332. http://www.redalyc.org/articulo.oa?id=476255360015

Collins, A. (2004). The comet assay for DNA damage repair: principles, applications, and limitations. Mol. Biotechnol, 26(3), 249-261. https://doi.org/10.1385/MB:26:3:249

Demonte, F. C. (2016) Un análisis de las políticas sociales alimentarias en la Argentina reciente (2001-2008). Población & Sociedad, 23(1), 5-43. http://sedici.unlp.edu.ar/handle/10915/108057

Eom, S. Y., Yim, D. H., Huang, M., Park, C. H., Kim, G. B., Yu, S. D., y Kim, H. (2020). Copper–zinc imbalance induces kidney tubule damage and oxidative stress in a population exposed to chronic environmentalcadmium. International archives of occupational and environmental health, 93(3), 337-344. https://doi.org/10.1007/s00420-019-01490-9

Escobedo-Monge, M. F., Barrado, E., Alonso Vicente, C., Escobedo-Monge, M. A., Torres-Hinojal, M.C., Marugán-Miguelsanz, J. M., y Redondo del Río, M. P. (2020). Copper and Copper/Zinc Ratio in a Series of Cystic Fibrosis Patients. Nutrients, 12(11), 3344. https://doi.org/10.3390/nu12113344

Fedor, M., Socha, K., Urban, B., Soroczyńska, J., Matyskiela, M., Borawska, M. H., y BakunowiczŁazarczyk, A. (2017). Serum concentration of zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Biological trace element research, 176(1), 1-9. https://doi.org/10.1007/s12011-016-0805-1

Feliu, M. S., Piñeiro, A., López, C., y Slobodianik, N. H. (2005). Valores de referencia de cobre, zinc y selenio en niños. Acta bioquímica clínica latinoamericana, 39(4), 459-462. http://www.redalyc.org/articulo.oa?id=53539407

Fenech, M. (2001). Recommended dietary allowances (RDAs) for genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 480, 51-54. https://doi.org/10.1016/S0027-5107(01)00168-3

Fenech, M. (2005). The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis. Mutagenesis, 20(4), 255-269. https://doi.org/10.1093/mutage/gei040

Fenech, M. (2010). Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. The American journal of clinical nutrition, 91(5), 1438S-1454S. https://doi.org/10.3945/ajcn.2010.28674D

Fenech, M. (2014). Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control. Advances in nutrition and cancer, 427-441. https://doi.org/10.1007/978-3-642-38007-5_24

Fraga, C G, y Oteiza, P I (2002). Iron toxicity and antioxidant nutrients. Toxicology, 180(1), 23-32. https://doi.org/10.1016/S0300-483X(02)00379-7

Gaetke, L. M., y Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1-2), 147-163. https://doi.org/10.1016/S0300-483X(03)00159-8

Giovannucci, E., Stampfer, M. J., Colditz, G. A., Hunter, D. J., Fuchs, C., Rosner, B. A., y Willett, W. C. (1998). Multivitamin use, folate, and colon cancer in women in the Nurses’ Health Study. Annals of internal medicine, 129(7), 517-524. https://doi.org/10.7326/0003-4819-129-7-199810010-00002

Guevara, D. A., Reyes, S., López, M., Flores, N., Aguirre, S., Muñoz, E. B., Fornasini, M. y Baldeón, M. E. (2017). Impact of milk based micronutrient supplementation in school children in Quito-Ecuador. Nutrición Hospitalaria, 34(6), 1305-1313. https://doi.org/10.20960/nh.1353

Guo, C. H., y Wang, C. L. (2013). Effects of zinc supplementation on plasma copper/zinc ratios, oxidative stress, and immunological status in hemodialysis patients. International journal of medical sciences, 10(1), 79–89. https://doi.org/10.7150/ijms.5291

Haldsrud, R., y Krøkje, A. (2009). Induction of DNA double-strand breaks in the H4IIE cell line exposed to environmentally relevant concentrations of copper, cadmium, and zinc, singly and in combinations. Journal of toxicology and environmental health. Part A, 72(3-4), 155–163. https://doi.org/10.1080/15287390802538964

Jerez M., Carreño M., Castro A., Marino Alarcón Corredor O., Rondon C., García Fernandez M.Y. y Di Bernardo Navas M.L. (2021). Importancia de la relación cobre-zinc como indicador bioquímico de dismenorrea primaria. Red Científica Latinoamericana. https://www.siicsalud.com/acise_viaje/ensiicas-profundo.php?id=123840

Johnson, W. T., y Thomas, A. C. (1999). Copper Deprivation Potentiates Oxidative Stress in HL‐60 Cell Mitochondria. Proceedings of the Society for Experimental Biology and Medicine, 221(2), 147-152. https://doi.org/10.1046/j.1525-1373.1999.d01-68.x

Jomova, K, y Valko, M (2011). Importance of Iron Chelation in Free Radical-Induced Oxidative Stress and Human Disease. Current Pharmaceutical Design. https://www.ingentaconnect.com/content/ben/cpd/2011/00000017/00000031/art00010

Kambe, T., Weaver, B. P., y Andrews, G. K. (2008). The genetics of essential metal homeostasis during development. Genesis, 46(4), 214-228. https://doi.org/10.1002/dvg.20382

Kasprzak, K. (2002) Oxidative DNA damage in metal-induced carcinogenesis. In: Chang LW, editor. Toxicology of Metals. CRC Press Inc, Boca Raton FL, pp. 299–320. https://doi.org/10.1016/s0891-5849(02)00809-2

Kimura, M., Umegaki, K., Higuchi, M., Thomas, P., y Fenech, M. (2004). Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. The Journal of nutrition, 134(1), 48-56. https://doi.org/10.1093/jn/134.1.48

Lin, H, Li, L, Jia, X, Ward, D M, y Kaplan, J (2011). Genetic and Biochemical Analysis of High Iron Toxicity in Yeast. Journal of Biological Chemistry, 286(5), 3851-3862. https://doi.org/10.1074/jbc.M110.190959

Malavolta M., Piacenza F., Basso A., Giacconi R., Costarelli L., y Mocchegiani, E. (2015). Serum copper to zinc ratio: Relationship with aging and health status. Mechanisms of Ageing and Development, 151, 93-100. https://doi.org/10.1016/j.mad.2015.01.004

Maury Sintjago, E., Mattei, A., Perozo, K., Bravo, A., Martínez, E., y Vizcarra, M. (2010). Niveles Plasmáticos de Hierro, Cobre y Zinc en escolares Barí. Pediatría (Asunción), 37(2), 112-117. https://www.revistaspp.org/index.php/pediatria/article/view/204

Mezzetti, A., Pierdomenico, S. D., Costantini, F., Romano, F., De Cesare, D., Cuccurullo, F., y Fellin, R. (1998). Copper/zinc ratio and systemic oxidant load: effect of aging and aging-related degenerative diseases. Free Radical Biology and Medicine, 25(6), 676-681. https://doi.org/10.1016/S0891-5849(98)00109-9

Morris, M. C., Beckett, L. A., Scherr, P. A., Hebert, L., Bennett, D. A., Field, T. S., y Evans, D. A. (1998). Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer disease and associated disorders 12(3), 121–126. https://doi.org/10.1097/00002093-199809000-00001

Olive, P. (1999) DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int. J. Radiat. Biol, 75, 395. https://doi.org/10.1080/095530099140311

OMS (2002). The world health report 2002. Reducing risks, promoting healthy life. Ginebra, Suiza. https://apps.who.int/iris/bitstream/handle/10665/42510/WHR_2002.pdf

Osredkar, J., y Sustar, N. (2011). Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol S, 3(2161), 0495. http://dx.doi.org/10.4172/2161-0495.S3-001

Padula, G., Ponzinibbio, M. V., y Seoane, A. I. (2014). Suplementación de cultivos de sangre periférica con sulfato de zinc: inestabilidad genómica asociada a su deficiencia y exceso. BAG. Journal of basic and applied genetics, 25(2), 41-52.

Padula, G., Ponzinibbio, M. V., Gambaro, R. C., y Seoane, A. I. (2017). Genomic instability related to zinc deficiency and excess in an in vitro model: is the upper estimate of the physiological requirements recommended for children safe? In Vitro Cellular & Developmental Biology-Animal, 53(7), 586-592. http://dx.doi.org/10.1007/s11626-017-0146-1

Padula, G., Matella M., Gambaro, R. y Seoane A. I. (2021). Importancia de los micronutrientes en el crecimiento y desarrollo de la población infantil. RUNA, 42(2), 83-97.

Picco S., Padula G., Anchordoquy J.M., Anchordoquy J.P., Furnus C., y Seoane, A (2020). Consequences of copper and zinc co-supplementation on DNA integrity and apoptosis of bovine cumulus cells during oocyte in vitro maturation. Animal Science Papers and Reports, 38(2), 145-153.

Picco, S. J., Abba, M. C., Mattioli, G. A., Fazzio, L. E., Rosa, D., De Luca, J. C., y Dulout, F. N. (2004). Association between copper deficiency and DNA damage in cattle. Mutagenesis, 19(6), 453-456. https://doi.org/10.1093/mutage/geh056

Prá, D, Franke, S I R, Henriques, J A P, y Fenech, M (2012). Iron and genome stability: An update. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 733(1-2), 92-99. https://doi.org/10.1016/j.mrfmmm.2012.02.001

Rahn-Chique, K., Carrión, N., y Murillo, M. (2012). Determinación de cobre, magnesio y zinc en leucocitos mononucleares mediante espectrometría de absorción atómica con llama. Investigación clínica, 53(4), 34Selhub, J., Bagley, L. C., Miller, J., y Rosenberg, I. H. (2000). B vitamins, homocysteine, and neurocognitive function in the elderly. The American journal of clinical nutrition, 71(2), 614S-620S. https://doi.org/10.1093/ajcn/71.2.614s

Sharif, R., Thomas, P., Zalewski, P., Graham, R. D., y Fenech, M. (2011). The effect of zinc sulphate and zinc carnosine on genome stability and cytotoxicity in the WIL2- NS human lymphoblastoid cell line. Mutat. Res., 720, 22-33. https://doi.org/10.1016/j.mrgentox.2010.12.004

Sharif, R., Thomas, P., Zalewski, P., y Fenech, M. (2012). The role of zinc in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 733(1-2), 111-121. https://doi.org/10.1016/j.mrfmmm.2011.08.009

Singh, N. P., McCoy, M. T., Tice, R. R., y Schneider, E. L. (1988). A simple technique for quantitation of lowlevels of DNA damage in individual cells. Experimental cell research, 175(1), 184-191. https://doi.org/10.1016/0014-4827(88)90265-0

Singh, R. P., Kumar, S., Nada, R., y Prasad, R. (2006). Evaluation of copper toxicity in isolated human peripheral blood mononuclear cells and it’s attenuation by zinc: ex vivo. Molecular and cellular biochemistry, 282(1), 13-21. https://doi.org/10.1007/s11010-006-1168-2

Suttle, N.F. (2010). Mineral Nutrition of Livestock. 4th Edition, CABI, Cambridge. http://dx.doi.org/10.1079/9781845934729.0000

Toxqui, L, De Piero, A, Courtois, V, Bastida, S, Sánchez Muniz, F J, y Vaquero, M P (2010). Iron deficiency and overload. Implications in oxidative stress and cardiovascular health. Nutricion Hospitalaria, 25(3), 350-365.

Varea, A., Disalvo, L. y González, H. (2006). Repercusión de las deficiencias de micronutrientes en salud pública. Ludovica Pediátrica, VII(1), 10-15. https://digital.cic.gba.gob.ar/handle/11746/3920

Watkins, M. L., Erickson, J. D., Thun, M. J., Mulinare, J., y Heath Jr, C. W. (2000). Multivitamin use and mortality in a large prospective study. American journal of epidemiology, 152(2), 149-162. https://doi.org/10.1093/aje/152.2.149

Wu, J., Lyons, G. H., Graham, R. D., y Fenech, M. F. (2009). The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes measured using the cytokinesisblock micronucleus cytome assay. Mutagenesis, 24(3), 225-232. https://doi.org/10.1093/mutage/gen074

Zhang, S., Hunter, D. J., Hankinson, S. E., Giovannucci, E. L., Rosner, B. A., Colditz, G. A., y Willett, W. C. (1999). A prospective study of folate intake and the risk of breast cancer. Jama, 281(17), 1632-1637. https://doi.org/10.1001/jama.281.17.1632

Descargas

Publicado

01.07.2022

Cómo citar

Mantella, M., Gambaro, R., Seoane, A., & Padula, G. (2022). Importancia de la proporción cobre/zinc: una aproximación al análisis de los efectos de la suplementación in vitro sobre el genoma. Revista Argentina De Antropología Biológica, 24(2), 052. https://doi.org/10.24215/18536387e052

Número

Sección

Trabajos Originales