Evaluation of two age estimation models based on root dentine translucency measurements in permanent lower canines

Authors

  • Gonzalo Garizoain CONICET. Cátedra de Citología, Histología y Embriología “A”. Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires. Argentina. https://orcid.org/0000-0003-0359-9875
  • Marcos Plischuk CONICET. Cátedra de Citología, Histología y Embriología “A”. Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires. Argentina. https://orcid.org/0000-0003-0987-2369
  • Susana Alicia Salceda CONICET. División de Antropología. Museo de Ciencias Naturales de La Plata. Buenos Aires. Argentina. https://orcid.org/0000-0003-4542-5849
  • Marcela Nilda García Cátedra de Citología, Histología y Embriología “A”. Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires. Argentina. https://orcid.org/0000-0003-3032-9467

DOI:

https://doi.org/10.24215/18536387e046

Keywords:

lineal regressions, logarithmic regressions, dental translucency

Abstract

Age is one of the biological characteristics that can best be estimated by tooth analysis. In adult individuals, one of the most relevant age indicators is the translucency of the dentine. Age estimation methods using continuous variables are often based on linear regressions. It is well known that many of these indicators increase with age, but not linearly. In this sense, it has been demonstrated that, in certain segments of the data distribution, age is adjusted to the straight line of the regression, while in others the adjustment is not so linear. As a result of this problem, two models of age estimation based on regressions (linear and logarithmic) were analysed from root translucency measurements in permanent lower canines, from their development in a sample from a local population (Lambre collection, FCM-UNLP), to their subsequent evaluation in a different sample (Anatomical Museum collection, University of Valladolid). Results of the validation of both models showed a better overall performance of the logarithmic model. Age proved an important factor in the estimates, with an increase of the error in older individuals. On the other hand, the logarithmic model showed smaller errors in the estimates, when applied to the overall sample.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ackerman, A., Steyn, M., (2014) A test of Lamendin method of age estimation in South African canines. Forensic Science International, 236, 192.e1-192.e6. https://doi.org/10.1016/j.forsciint.2013.12.023

Aka, P. S., Canturk, N., Dagalp, R. y Yagalp, M. (2009) Age determination from central incisors of foetuses and infants. Forensic Science International, 184(1-3), 15-20. https://doi.org/10.1016/j.forsciint.2008.11.005

AlQahtani, S. J., Hector, M. P. y Liversidge, H. M. (2010). Brief Communication: The London atlas of human tooth development and eruption. American Journal of Physical Anthropology, 142(3), 481-490. https://doi.org/10.1002/ajpa.21258

Aranda, C., Barrientos, G. y Del Papa, M. (2014). Código deontológico para el estudio, conservación y gestión de restos humanos de poblaciones del pasado. Revista Argentina de Antropología Biológica, 16(2), 111-113. https://doi.org/10.17139/raab.2014.0016.02.05

Aykroyd, R. G., Lucy, D., Pollard, A. M. y Solheim, T. (1997). Regression analysis in adult age estimation. American Journal of Physical Anthropology, 104(2), 259-265. https://doi.org/10.1002/(SICI)1096-8644(199710)104:2<259::AID-AJPA11>3.0.CO;2-Z

Aykroyd, R. G., Lucy, D., Pollard A. G. y Roberts, C. A. (1999). Nasty, brutish but not necessarily short: a reconsideration of the statistical methods used to calculate age at death from adult human skeletal and dental age indicators. American Antiquity, 64(1), 55-70. https://doi.org/10.2307/2694345

Baccino, E., Sinfield, L., Colomb, S., Pacal Baum, T. y Martrille L. (2014). Technical note: The twostep procedure (TPS) for the determination of age at death of adult human remains in forensic cases. Forensic Science International, 244, 247-251. https://doi.org/10.1016/j.forsciint.2014.09.005

Bang, G, y Ramm, E. (1970). Determination of age in humans from root dentin translucency. Acta Odontological Scandinavica, 28, 3-35. https://doi.org/10.3109/00016357009033130

Birch, W. y Dean, M. C. (2014) A method of calculating human deciduous crown formation times and of estimating the chronological ages of stressful events ocurring during deciduous enamel formation. Journal of Forensic and Legal Medicine, 22, 127-144. https://doi.org/10.1016/j.jflm.2013.12.002

Brkic, H., Milicevic, M. y Petrovecki, M. (2006). Age estimation methods using anthropological parameters on human teeth. Forensic Science International, 162 (1-3), 13-16. 10.1016/j.forsciint.2006.06.022

Brooks, S, y Suchey, J. M. (1990). Skeletal age determination based on the os púbis: a comparison of the Acsádi-Nemeskéri and Suchey and Brooks methods. Human Evolution, 5(3), 227-238.

Buckberry, J. L., y Chamberlain, A. T. (2002). Age estimation from the auricular surface of the ilium: A revised method. American Journal of Physical Anthropology, 119 (3), 213-219.

Burke, F. M. y Samarawickrama, D. Y. D. (1995). Progressive changes in the pulpodentinal complex and their clinical consequences. Gerodontology, 12(2), 57-66.

Cappella, A., Cummaudo, M., Arrigoni, E., Collini F. y Cattaneo, C. (2017). The issue of age estimation in a modern skeletal population: are even the modern current aging methods satisfactory for the elderly? Journal of Forensic Sciences, 65(1), 12-17. https://doi.org/10.1111/1556-4029.13220

Cardoso, H. F. V. (2007). Accuracy of developing tooth length as an estimate of age in human skeletal remains: the deciduous dentition. Forensic Science International, 172, 17-22. https://doi.org/10.1016/j.forsciint.2006.11.006

Cardoso, H. F. V., Abrantes, J. y Humphrey, L. T. (2014). Age estimation of immature human skeletal remains from diaphyseal length of the long bones in the postnatal period. International Journal of Legal Medicine, 128, 809-824. https://doi.org/10.1007/s00414-013-0925-5

Cardoso, H. F. V., Spake, L. y Liversidge, H. M. (2016). A reappraisal of permanent tooth length as an estimate of age in human immature skeletal remains. Journal of Forensic Sciences, 61(5), 1180-1189. https://doi.org/10.1111/1556-4029.13120

Cardoso, H. F. V., Mejers, J. y Liversidge, H. M. (2019). A reappraisal of developing deciduous tooth length as an estimate of age in human immature skeletal remains. Journal of Forensic Sciences, 64(2), 385-392. https://doi.org/10.1111/1556-4029.13892

Cleophas, T. J. y Zwinderman, A. H. (2016). SPSS for starters and 2nd levellers. (2a ed.). Springer.

COBIMED (2012). Comité de Bioética de la Facultad de Ciencias Médicas (UNLP). Aprobación del protocolo: Integración y análisis de la colección osteológica Prod. Dr. Rómulo Lambre. Expte: 0800-013812/12-000.

Couve, E., Osorio, R. y Schmachtenberg, O. (2013). The amazing odontoblast: activity, autophagy and aging. Journal of Dental Research, 92(9), 765-772. https://doi.org/10.1177/0022034513495874

Cunha, E., Baccino, E., Martrille, L., Ramsthaler, F., Prieto, J., Schuliar, Y., Linnerup, N. y Cattaneo, C. (2009). The problem of aging human remains and living individuals: a review. Forensic Science International, 193, 1-13. https://doi.org/10.1016/j.forsciint.2009.09.008

Dermijian, A. y Goldstein, H. (1973). New systems for dental maturity based on seven and four teeth. Annals of Human Biology, 3(5), 411-421.

Dermijian, A., Goldstein, H. y Tanner, J. M. (1973). A new system of dental age assessment. Human Biology, 42, 211-227. https://doi.org/10.1080/03014467600001671

Dermijian, A. (1986). Dentition. En: F. Falkner y J. M. Tanner (Eds.), Postnatal Growth Neurobiology (pp. 198-269). Plennum Press. https://doi.org/10.1007/978-1-4899-0522-2_12

Desántolo, B. (2012) Validación metodológica para la estimación de la edad en restos óseos humanos adultos: análisis histomorfométrico [Tesis de postgrado, Universidad Nacional de La Plata].

Drusini, A., Calliari, I. y Volpe, A. (1991.) Root dentine transparency: Age determination of human teeth using computarized densitometric analysis. American Journal of Physical Anthropology, 85(1), 25-30. https://doi.org/10.1002/ajpa.1330850105

Ermenc, B. (1997) Metamorphosis of root dentine and age. International Journal of Osteoarchaeology, 7(3), 230-234. https://doi.org/10.1002/(SICI)1099-1212(199705)7:3<230::AIDOA337>3.0.CO;2-%23

Foti, B., Adalian, P., Signoli, M., Ardagna, Y., Dutour, O. y Leonetti, G. (2001). Limits of the Lamendin method in age determination. Forensic Science International, 122, 101-106. https://doi.org/10.1016/S0379-0738(01)00472-8

Franklin, D. (2010). Forensic age estimation in human skeletal remains: current concepts and future directions. Legal Medicine, 12, 1-7. https://doi.org/10.1016/j.legalmed.2009.09.001

Garizoain, G. (2019). Patrones estructurales en dentición permanente humana como predictores de edad y sexo. Análisis de una colección osteológica documentada [Tesis de postgrado, Universidad Nacional de La Plata].

Garizoain, G., Petrone, S., Plischuk, M., Inda, A. M. y García, M. N. (2020). Evaluation of Lamendin’s age-at-death estimation method in a documented osteological collection (La Plata, Argentina). Forensic Science International: Reports, 2, 1-8. https://doi.org/10.1016/j.fsir.2020.100060

Garizoain, G., Parra, R. C., Escalante-Florez, K. J., Aranda, C. M., Luna, L. H., Condori, L. A., Valderrama-Leal, C. I. y Retana-Milán, F. (2021). Age-at-death estimation in adults using a three forensic methodologies: A Lamendin’s technique approach for Latin American context and the extension of a forensic international database. Journal of Forensic Sciences, 00, 1-13. https://doi.org/10.1111/1556-4029.14805

González-Colmenares, G. (2007). Determinación de la edad en adultos mediante un método dental. Aplicación y análisis [Tesis de Postgrado, Universidad de Granada].

González-Colmenares, G., Botella-Lopez M. C., Moreno-Rueda, G. y Fernández-Cardete, J. R. (2007). Age estimation by a dental method: a comparison of Lamendin’s and Prince & Ubelaker’s technique. Journal of Forensic Sciences, 52, 1156-1160.

Gustafson, G. (1950). Age determination on teeth. The Journal of the American Dental Association, 41, 45-54.

Hawkinson, R. W. y Eisenmann, D. R. (1983). Electron microscopy of dentinal tubule sclerosis in the enamel-free region of a rat molar. Archives of Oral Biology, 28(5), 409-414.

Hillson, S. (1996). Dental Anthropology. Cambridge University Press. https://doi.org/10.1017/CBO9781139170697

Hillson S. (2014). Tooth Development in Human Evolution and Bioarchaeology. Cambridge University Press. https://doi.org/10.1017/CBO9780511894916

Huda, T. F. J. y Bowman, J. E. (1995) Age determination from dental microstructure in juveniles. American Journal of Physical Anthropology, 97(2), 135-150. https://doi.org/10.1002/ajpa.1330970206

Irurita Olivares, J., Alemán Aguilera, I., Viciano Badal, J., Luca, S. y Botella López M. (2014). Evaluation of the maximum length of deciduous teeth for estimation of the age of infants and young children: a proposal of new regression formulas. International Journal of Legal Medicine, 128(2), 345-392. https://doi.org/10.1007/s00414-013-0903-y

Jousset, M., Franco, A., Gard, C., Penneau M. y Rougé-Maillart, N. C. (2006). Determination de l’age des adultes en post-mortem: interet de l’utilisation des criteres de Gustafson. Antropo, 11, 271-277.

Katz, D. y Suchey J. M. (1989). Races differenes in pubic symphyseal aging patterns in the male. American Journal of Physical Anthropology, 80, 167-172. https://doi.org/10.1002/ajpa.1330800204

Kinney, J. H., Nalla, R. K., Pople, J. A., Breuning, T. M. y Ritchie, R. O. (2005). Age related transparent root dentine: mineral concentration, crystallite size and mechanical properties. Biomaterials, 26, 3363-3376. https://doi.org/10.1016/j.biomaterials.2004.09.004

Kvaal, S. I., y Solheim, T. (1994). A non-destructive dental method for age estimation. The Journal of Forensic Odonto-Stomatology, 12(1), 6-11.

Lamendin H., Baccino E., Humbert J. F., Tavernier J. C., Nossintchouk R. M. y Zerrilli A. (1992). A simple technique for age estimation in adult corpses: the two criteria dental method. Journal of Forensic Sciences, 37, 1373-1379. https://doi.org/10.1520/JFS13327J

Liversidge, H. M, Dean, M. C. y Molleson, T. I. (1993). Increasing human tooth length between birth and 5.4 years. American Journal of Physical Anthropology, 90, 307-313. https://doi.org/10.1002/ajpa.1330900305

Mahoney, P. (2011). Human deciduous mandibular molar incremental enamel development. American Journal of Physical Anthropology, 144(2), 204-214. https://doi.org/10.1002/ajpa.21386

Martrille, L., Ubelaker, D. H., Cattaneo, C., Seguret, F., Tremblay, M. y Baccino E. (2007). Comparison of four skeletal methods for the estimation of age at death on white and black adults. Journal of Forensic Sciences, 52(2), 302-307. https://doi.org/10.1111/j.1556-4029.2006.00367.x

Megyesi, M. S., Ubelaker, D. H. y Sauer, N. J. (2006). Test of Lamendin aging method on two historic skeletal samples. American Journal of Physical Anthropology, 131, 363-367. https://doi.org/10.1002/ajpa.20446

Meinl A., Tangl S., Pernicka E., Fenes C. y Watzek G. (2007). On the applicability of secondary dentin formation to radiological age estimation in young adults. Journal of Forensic Sciences, 52(2), 438-441. https://doi.org/10.1111/j.1556-4029.2006.00377.x

Miles A. E. W. (1963). The dentition in the assessment of individual age in skeletal material. En D. R. Brothwell (Ed.), Dental Anthropology. Pergamon Press.

Nava, A., Bondioli, L., Coppa, A., Dean, C., Rossi P. F. y Zanolli C. (2017). New regression formula to estimate prenatal crown formation time of human deciduous central incisors derived from a Roman imperial sample (Velia, Salerno, Italy, 1-II cent. CE). PLoS ONE, 12(7), e0180104. https://doi.org/10.1371/journal.pone.0180104

Nawrocki, S. P. (2010) The nature and sources of error in the estimation of age at death from the skeleton. En: K. Latham y M. Finnegan (Eds.), Age Estimation of the Human Skeleton. Charles C. Thomas Publisher ltd.

Parra R. C., Ubelaker D. H., Adserias-Garriga J., Escalante-Florez K. J., Condori L. A. y Buikstra J. E. (2020) Root dentin translucency and forensic international dental database methodology for estimating age-at-death in adults using single-rooted teeth. Forensic Science International, 317, 1-14. https://doi.org/10.1016/j.forsciint.2020.110572

Parra R. C., Suárez-Ponce D. G., Escalante-Florez K. J., Condori L. A., Calcina-Mendoza O., Peralta-CerroL . M. y Rosas-Moyano G. A. (2021). Age-at-death estimation in adults and verification of a Forensic International Methodology using single-rooted teeth: An Approach for a Peruvian context. Forensic Science International: Reports, 3, 1-10. https://doi.org/10.1016/j.fsir.2021.100176

Plischuk, M., Garizoain, G., Petrone, S., Desántolo, B., García Mancuso, R., Salceda, S., y A. M. Inda (2020) El aporte de las colecciones osteológicas documentadas. Líneas de investigación en la colección osteológica “Prof. Dr. Rómulo Lambre” (La Plata, Argentina). Jangwa Pana: Revista de Ciencias Sociales y Humanas, 19(1), 1-26.

Prince, D. A. (2004). Estimation of Skeletal age-at-death from dental root translucency [Tesis de Postgrado, University of Tenesse].

Prince, D. A. y Ubelaker, D. H. (2002). Application of Lamendin’s adult dental aging technique to a diverse skeletal sample. Journal of Forensic Sciences, 47(1), 107-116.

Prince, D. A. y Konigsberg, L. W. (2008). New formulae for estimating age at death in the Balkans utilizing Lamendin’s dental technique and Bayesian analysis. Journal of Forensic Sciences, 53(3), 578-587. https://doi.org/10.1111/j.1556-4029.2008.00713.x

Ribeiro Lopes, J., Borges Braga dos Santos Queiroz, S., Marques Fernandez, M., Saavedra de Paiva, L. A. y Nogueira de Oliveira, R. (2014). Age estimation by teeth periodontosis and transparency: accuracy of Lamendin’s method on a Brazilian sample. Brazilian Journal of Oral Sciences, 13(1),17-21.http://dx.doi.org/10.1590/1677-3225v13n1a04

Ritz-Timme, S., Cattaneo, C., Collins, M. J., Waite, E. R., Schutz, S. W., Kaatsch, H. J. y Borrman H. I. (2000). Age estimation: the state of the art in relation to the specific demands of forensic practice. International Journal of Legal Medicine, 113, 129-36. https://doi.org/10.1007/s004140050283

Santos Pérez, J. (2017). Distancias y ángulos entre estructuras óseas de la base del cráneo y su aplicación en abordajes endoscópicos endonasales expandidos [Tesis de Postgrado, Universidad de Valladolid].

Sarajlic, N., Cihlarz, Z., Konowski, E-E., Selak, I., Brkic, H. y Topic, B. (2006).Two-criteria dental aging method applied to a Bosnian population: a comparison of formulae for each group tooth versus one formula for all teeth. Bosnian Journal of Medical Sciences, 6(3), 78-83.

Saunders, S., De Vito, C., Herring, A., Southern, R. y Hoppa, R. (1993). Accuracy tests of tooth formation age estimation for human skeletal remains. American Journal of Physical Anthropology, 92, 173-188. https://doi.org/10.1002/ajpa.1330920207

Sengupta A., Shellis R. P. y Whittaker D. K. (1998). Measuring root dentine translucency in human teeth of varying antiquity. Journal of Archaeological Sciences, 25, 1221-1229. https://doi.org/10.1006/jasc.1998.0295

Singhal, A., Ramesh, V. y Balamurali, P. D. (2010). A comparative analysis of root dentin transparency with known age. Journal of Forensic Dental Sciences, 2(1), 18-21. https://doi.org/10.4103/0974-2948.71052

Solheim, T, (1989). Dental root transparency as an indication of age. Journal of Dental Research, 97, 189-197.

Solheim, T. y Sundnes P. K. (1980). Dental age estimation of Norwegian adults: a comparison of differents methods. Forensic Science International, 16, 7-17. https://doi.org/10.1016/0379-0738(80)90174-7

Suzuki, M., Sugimura, Y., Yamada, S., Omori, Y., Miyamoto, M. y Yamamoto, J. (2013). Predicting recovery of cognitive function soon after stroke: differential modelling of logarithmic and linear regression. PLoS ONE, 8(1), e53488. https://doi.org/10.1371/journal.pone.0053488

Thomas, G. J., Whittaker D. K. y Embery, G. (1993). A comparative study of translucent apical dentine in vital and non-vital human teeth. Archives of Oral Biology, 39(1), 29-34.

Ubelaker, D. H. y Parra, R. C. (2008) Application of three dental methods of adult age estimation from intact single rooted teeth to a Peruvian sample. Journal of Forensic Sciences, 53(3), 608-311. https://doi.org/10.1111/j.1556-4029.2008.00699.x

Wegener, R, y H. Albrecht (1980). Estimation of age from root dentine transparency. Zeitschrif fur Rechtsmedizine, 87, 29-34.

Yoder, C., Ubelaker, D. H. y J. F. Powell (2001). Examination of variation in sternal rib end morphology relevant to age assessment. Journal of Forensic Sciences, 46, 223-227.

Zorba E., Gouta N., Spiliopoulou C. y K. Moriaitis (2018). An evaluation of dental methods by Lamendin and Prince and Ubelaker for estimation of adult age in a sample of modern Greeks. HOMO-Journal of Comparative Human Biology, 69, 17-28. https://doi.org/10.1016/j.jchb.2018.03.006

Published

2022-01-03

How to Cite

Garizoain, G., Plischuk, M., Salceda, S. A., & García, M. N. (2022). Evaluation of two age estimation models based on root dentine translucency measurements in permanent lower canines. Revista Argentina De Antropología Biológica, 24(1), 046. https://doi.org/10.24215/18536387e046

Issue

Section

Original Articles

Most read articles by the same author(s)