Carbono orgánico del suelo

Estratificación y variación espacial de diferentes fracciones en un Argiudol de la Región Pampeana bajo siembra directa

  • María Paz Salazar Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • Rafael Villarreal Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • Luis Alberto Lozano Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • María Florencia Otero Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina
  • Nicolás Guillermo Polich Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina
  • Guido Lautaro Bellora Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina
  • Carlos Germán Soracco Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Palabras clave: carbono orgánico particulado, ácidos húmicos, ácidos fúlvicos, huminas, estratificación

Resumen

El carbono orgánico del suelo (COS) es un factor importante para el diagnóstico de la calidad del suelo. El fraccionamiento del COS por métodos físicos y químicos resulta útil para su caracterización, ya que algunas fracciones son más sensibles al efecto de distintas prácticas de manejo. Los objetivos de este trabajo fueron (i) determinar el contenido de COS y de diferentes fracciones del COS a diferentes profundidades y posiciones en un Argiudol bajo siembra directa (SD), y (ii) determinar la relación entre fracciones físicas y químicas del COS. En un ensayo experimental localizado en Chascomús (región pampeana), determinamos COS, ácidos húmicos (AH), ácidos fúlvicos (AF), huminas, carbono orgánico particulado grueso y fino (COPg y COPf) y carbono orgánico asociado a minerales (COM), a distintas profundidades y en el surco y el entre surco. Los contenidos de COS y de las distintas fracciones mostraron distintas distribuciones verticales. La contribución de AH y COPg (fracciones más nuevas y más lábiles) al COS fue mayor en la superficie que en profundidad, mientras que la contribución de las huminas (fracción más vieja y recalcitrante) al COS aumentó en profundidad. La contribución de AF, POCf y COM al COS se mantuvo constante. No hubo efecto de la posición surco y entre surco en el contenido ni en la composición del COS. El contenido de AF se encontró principalmente correlacionado con el COPg, los AH con el COPf, y las huminas con el COM.

Descargas

La descarga de datos todavía no está disponible.

Métricas

Cargando métricas ...

Citas

Álvarez, C.R., A.O. Costantini; A. Bono, M.A. Taboada, F.H. Gutiérrez Boem, P.L. Fernández & P. Prystupa. 2011. Distribution and vertical stratification of carbon and nitrogen in soil under different managements in the Pampean Region of Argentina. Revista Brasileira de Ciência do Solo 35 (6): 1985-1994.

Benites, V.M., B. Madari & P.L. Machado. 2003. Extração e Fracionamento Quantitativo de Substâncias Húmicas do Solo: um Procedimento Simplificado de Baixo Custo, Comunicado Técnico, Ministério da Agricultura Pecuária e Abastecimiento.

Binet, F., V. Hallaire & P. Curmi. 1997. Agricultural practices and the spatial distribution of earthworms in maize fields. Relationships between earthworm abundance, maize plants and soil compaction. Soil Biology and Biochemistry 29 (3-4): 577-583.

Blanco-Canqui, H. & S.J. Ruis. 2018. No-tillage and soil physical environment. Geoderma 326:164-200.

Bongiovanni, M.D. & J.C. Lobartini. 2006. Particulate organic matter, carbohydrate, humic acid contents in soil macro- and microaggregates as affected by cultivation. Geoderma 136: 660–665.

Briedis, C., J.C.D.M. Sá, R.S. De-Carli, E.A.P. Antunes, L. Simon, M.L. Romko, L.S. Elias & A.D.O. Ferreira. 2012. Particulate soil organic carbon and stratification ratio increases in response to crop residue decomposition under no-till. Revista Brasileira de Ciência do Solo 36 (5): 1483-1490.

Cambardella, C.A. & E.T. Elliott. 1992. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Science Society of America Journal 56: 777-783.

Christensen, B.T. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52: 345-353.

Ding, G., X. Liu, S. Herbert, J. Novak, D. Amarasiriwardena & B. Xing. 2006. Effect of cover crop management on soil organic matter. Geoderma 130 (3-4): 229-239.

Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada & C.W. Robledo. 2008. InfoStat, versión 2008. Grupo Infostat, FCA, Universidad Nacional de Córdoba, Argentina, 268 pp.

Domínguez, A. & J.C. Bedano. 2016. The adoption of no-till instead of reduced tillage does not improve some soil quality parameters in Argentinian Pampas. Applied Soil Ecology 98: 166-176.

Duval, M.E., J.A. Galantini, J.O. Iglesias, S. Canelo, J.M. Martinez & L. Wall. 2013. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil & Tillage Research 131: 11-19.

Duval, M.E., E. De Sa Pereira, J.O. Iglesias & J. Galantini. 2014. Efecto de uso y manejo del suelo sobre las fracciones de carbono orgánico en un Argiudol. Ciencia del Suelo 32 (1): 105-115.

Duval, M.E., J.A. Galantini, J.E. Capurro & J.M. Martínez. 2016. Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions. Soil & Tillage 161: 95-105.

Duval, M.E., J.A. Galantini & F.L. Martínez. 2018. Labile soil organic carbon for assessing soil quality: influence of management practices and edaphic conditions. Catena 171: 316–326.

Franzluebbers, A.J. 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil & Tillage Research 66: 95-106.

Guimarães, D.V., M.I.S. Gonzaga, T.O. da Silva, T.L. da Silva, N. da Silva Días & M.I.S. Matias. 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil & Tillage Research 126: 177-182.

Hadas, A., L. Kautsky, M. Goek & E.E. Kara. 2004. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biology and Biochemistry 36 (2): 255-266.

Haynes, R.J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in agronomy 85: 221-268.

Hernanz, J.L., R. López, L. Navarrete & V. Sánchez-Girón. 2002. Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil & Tillage Research 66: 129–141.

IUSS Working Group WRB. 2015. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, 2015, pp. 192.

Jagadamma, S., J.M. Steinweg, M.A. Mayes, C., Wang & W.M. Post. 2014. Decomposition of added and native organic carbon from physically separated fractions of diverse soils. Biology and Fertility of Soils 50 (4): 613-621.

Kay, B.D. & A.J. VandenBygaart. 2002. Conservation tillage and depth stratification of porosity and soil organic matter. Soil & Tillage Research 66: 107-108.

Mengel, D.B. & S.A. Barber. 1974. Development and Distribution of the Corn Root System Under Field Conditions 1. Agronomy Journal 66 (3): 341-344.

Nelson, D.W. & L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3. Chemical Methods. Soil Sci. Soc. Am. Book Series, Number 5, Madison, WI, pp. 961–1010.

Novelli, L.E., O.P. Caviglia, M.G. Wilson, M.G. & M.C. Sasal. 2013. Land use intensity and cropping sequence effects on aggregate stability and C storage in a Vertisol and a Mollisol. Geoderma 195: 260-267.

Novelli, L.E., O.P. Caviglia & G. Piñeiro. 2017. Increased cropping intensity improves crop residue inputs to the soil and aggregate-associated soil organic carbon stocks. Soil & Tillage Research 165: 128-136.

Olk, D.C., P.R. Bloom, E.M. Perdue, D.M. McKnight, Y. Chen, A. Farenhorst, N. Senesi, Y.P. Chin, P. Schmitt-Kopplin, N. Hertkorn & M. Harir. 2019. Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. Journal of Environmental Quality 48: 217–232.

Orlov, D.S. 1985. Humus acids of soils. New Delhi: Oxonian Press Pvt. Ltd. 378 pp.

Paul, E.A. 2016. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry 98: 109-126.

Pausch, J., B. Zhu, Y. Kuzyakov & W. Cheng. 2013. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biology and Biochemistry: 57: 91-99.

Plaza-Bonilla, D., J. Álvaro-Fuentes & C. Cantero-Martínez. 2014. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil & Tillage Research 139: 19–22.

Rasse, D.P., C. Rumpel & M. Dignac. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil 269: 341-356.

Recio-Vázquez, L., G. Almendros, H. Knicker, P. Carral, P. & A. Álvarez. 2014. Multivariate statistical

assessment of functional relationships between soil physical descriptors and structural features of soil organic matter in Mediterranean ecosystems. Geoderma 230: 95-107.

Reicosky, D.C., S.D. Evans, C.A. Cambardella, R.R. Allmaras, A.R., Wilts & D.R. Huggins. 2002. Continuous corn with moldboard tillage: Residue and fertility effects on soil carbon. Journal of Soil and Water Conservation 57 (5): 277-284.

Romaniuk, R., M. Beltrán, L. Brutti, A. Costantini, S. Bacigaluppo, H. Sainz-Rozas & F. Salvagiotti. 2018. Soil organic carbon, macro-and micronutrient changes in soil fractions with different lability in response to crop intensification. Soil & Tillage Research 181: 136-143.

Sasal, M.C., A.E. Hubert Boizard, M.G. Andriulo & J.L. Wilson. 2017. Platy structure development under no-tillage in the northern humid Pampas of Argentina and its impact on runoff. Soil & Tillage Research 173: 33–41.

Schnitzer, M. 1982. Organic matter characterization. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), pp: 581-594.

Soil Survey Staff. 2014. Keys to Soil Taxonomy 10th ed. USDA-Natural Resources Conservation Service, Washington, DC.

Soracco, C.G., L.A. Lozano, R. Villarreal, E. Melani & G.O. Sarli. 2018. Temporal variation of soil physical quality under conventional and no-till systems. Revista Brasileira de Ciência do Solo 42: in press.

Stevenson, F.J. 1994. Humus chemistry: genesis, composition, reactions. John Wiley & Sons.

Swift, R.S. 1996. Chapter 35, Organic Matter Characterization, Soil Science Society of America and American Society of Agronomy. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3. Chemical Methods. Soil Sci. Soc. Am. Book Series, Number 5, Madison, WI, pp. 1011-1070.

Theng, B.K., K.R. Tate & P. Becker‐Heidmann. 1992. Towards establishing the age, location, and identity of the inert soil organic matter of a spodosol. Zeitschrift für Pflanzenernährung und Bodenkunde 155 (3): 181-184.

Walkley, A. & I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37 (1): 29-38.

Yadvinder-Singh, Bijay-Singh & J. Timsina. 2005. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Advances in Agronomy 85: 269-407.

Yang, Z., B.R.M. Singh & B.K. Sitaula. 2004. Fractions of organic carbon in soils under different crop rotations, cover crops and fertilization practices. Nutrient Cycling in Agroecosystems 70: 161–166.

Zalba, P. & A.R. Quiroga. 1999. Fulvic acid carbon as a diagnostic feature for agricultural soil evaluation. Soil Science 164 (1): 57-61.

Publicado
2020-12-07
Cómo citar
Salazar , M. P., Villarreal , R., Lozano, L. A., Otero, M. F., Polich, N. G., Bellora, G. L., & Soracco, C. G. (2020). Carbono orgánico del suelo. Revista De La Facultad De Agronomía, 119(2), 053. https://doi.org/10.24215/16699513e053