Productividad primaria neta aérea y eficiencia en el uso de la lluvia del Bosque Semiárido Chaqueño en el Parque Nacional Copo, Santiago del Estero, Argentina

Autores/as

  • Jose L. Tiedemann UNSa UNSE
  • Andreise Moreira Department of Education, Chapecó

DOI:

https://doi.org/10.24215/16699513e120

Palabras clave:

umbrales, precipitaciones estacionales, biomasa, series temporales de NDVI

Resumen

De acuerdo al programa REDD+, es necesario monitorear, cuantificar, e informar el estado de los bosques de las áreas protegidas. Con base a lo antes expuesto los objetivos de este estudio fueron, delimitar la estacionalidad del bosque Chaqueño Semiárido del Parque Nacional Copo, Santiago del Estero, Argentina (FCHS CNP) en el periodo 2000-2022 mediante series temporales NDVIMODIS. Cuantificar la Productividad Primaria Neta Aérea estacional integrada (SI-ANPP), su tendencia, y el uso eficiente del agua (RUE) y relacionarlo con las precipitaciones estacionales integradas (SR). Las series temporales NDVIMODIS y el umbral 0.5 NDVIRATIO posibilitaron delimitar la estación de crecimiento y cuantificar la SI-ANPP con elevada eficiencia. Fueron encontradas diferencias significativas (T = -3.49; p = 0.0006) en la SI-ANPP del FCHS CNP. La SI-ANPP evidencia sensibilidad a las anomalías negativas de precipitaciones estacionales. El modelo no lineal obtenido (R2 = 0.73; p < 0.0001) provee inédita información a nivel local sobre la eficiencia de la SI-ANPP del FCHS en función de las SR. La precipitación estacional >700 mm podría ser considerada umbral (o límite) en el uso eficiente del agua del FCHS. La elevada tendencia positiva de la SI-ANPP del FCHS CNP en el periodo 2000-2022 (slope = 462.43; T = 25.64; p <0.0001), evidencia una elevada estabilidad del sistema forestal.

Los resultados obtenidos reafirman la importancia de la creación de áreas legalmente protegidas, como parques nacionales para la preservación de los sistemas forestales de la región.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Baccini, A.G.S.J., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., ... Houghton, R. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2(3), 182-185. https://doi.org/10.1038/nclimate1354

Bai Y., Wu J., Xing Q., Pan Q., Huang J., Yang D. y Han X. (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89(8), 2140–2153. https://doi.org/10.1890/07-0992.1

Baldassini, P. y Paruelo, J. (2020). Sistemas agrícolas y silvopastoriles en el Chaco Semiárido. Impactos sobre la productividad primaria. Ecología Austral, 30, 045-062. https://doi.org/10.25260/EA.20.30.1.0.961

Baldassini, P. (2018). Provisión de Servicios Ecosistémicos en el Chaco Semiárido: efectos de los cambios en el uso del suelo y la variabilidad climática sobre la dinámica del carbono. Tesis Doctoral, IFEVA, Facultad de Agronomía, Universidad de Buenos Aires. https://ri.conicet.gov.ar/handle/11336/81496

Caziani, S.M., Trucco, C.E., Perovic, P.G., Tálamo, A.,... Derlindati, E. (2003). Línea de base y programa de monitoreo de la biodiversidad del Parque Nacional Copo. Proyecto de Conservación de la Biodiversidad. Donación GEF/BIRF/APN TF 028372-AR.

Dardel, C., Kergoat, L., Hiernaux, P., Grippa, M., Mougin, E., Ciais, P. y Nguyen, C.C. (2014). Rain-Use-Efficiency: What it Tells us about the Conflicting Sahel Greening and Sahelian Paradox. Remote Sens, 6, 3446-3474 https://doi.org/10.3390/rs6043446

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G. y González, L. (2022). Manual del Usuario. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Earth Observing System Project. (2022). Image derived from Sensor Sentinel-2 L2A. https://eos.com/landviewer

Food and Agriculture Organization. (2020). El estado de los bosques del mundo. Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://www.fao.org/3/ca8642es/CA8642ES.pdf

Fensholt, R. (2004). Assessment of primary production in a semi-arid environment from satellite data - exploiting capabilities of new sensors. Ph.D. thesis. Museum Tusculanum.

Fitzpatrick-Lins, K. (1981). Comparison of Sampling Procedures and Data Análisis for a Land-use and land-cover map. Photogrammetric Engineering & Remote Sensing, 47, 343-351.

Gamoun, M. (2016). Rain use efficiency, primary production and rainfall relationships in desert rangelands of Tunisia. Land Degradation & Development, 27, 738–747 http://dx.doi.org/10.1002/ldr.2541

Gao, Y., Skutsch, M., Paneque-G´alvez, J. y Ghilardi, A. (2020). Remote sensing of forest degradation: A review. Environmental Research Letters, 15 (10), 103001. https://iopscience.iop.org/article/10.1088/1748-9326/abaad7

Gavinet, J., Ourcival, J.M. y Limousin, J.M. (2019). Rainfall exclusion and thinning can alter the relationships between forest functioning and drought. New Phytologist, 223,1267–1279.

Hsu, J.S, Powell, J. y Adler, P.B. (2012). Sensitivity of mean annual primary production to rainfall. Global Change Biology, 18, 2246–2255. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2012.02687.x

Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., ... Williams, D.G. (2004). Convergence across biomes to a common rain-use efficiency. Nature, 429 (6992), 651–654. https://doi.org/10.1038/nature02561

Instituto Geográfico Nacional. (2022). Argenmaps. https://mapa.ign.gob.ar/

Kumar, L. y Mutanga, O. (2017). Remote Sensing of Above-Ground Biomass. Remote Sensing, 9, 935. https://www.mdpi.com/2072-4292/9/9/935

Li, Y., Li, M., Li, C. y Liu, Z. (2020). Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Scientific Reports, 10, 9952. https://doi.org/10.1038/s41598-020-67024-3

Le Houerou, H.N. (1984). Rain use efficiency: A unising concept in aridland ecology. Journal of Arid Environments, 7, 213-247.

Le Houerou, H.N., Bingham, R.L. y Skerbek, W. (1988). Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. Journal of Arid Environments, 15, 1-18.

Lekevičius, E. y Loreau, M. (2012). Adaptability and functional stability in forest ecosystems: a hierarchical conceptual framework. EKOLOGIJA, 58, 391–404.

Monteith, J.L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747-766. https://doi.org/10.2307/2401901

Morello, J. y Adamoli, J. (1974). Las grandes unidades de vegetación y ambiente del Chaco argentino. Segunda Parte: Vegetación y ambiente de la Provincia del Chaco. INTA Serie Fitogeografica 13.

Myneni, R.B y Williams, D.L. (1994). On the Relationship between FAPAR and NDVI. Remote Sensing Environment, 49, 200-21. https://doi.org/10.1016/0034-4257(94)90016-7

National Aeronautics and Space Administration. (2021). Prediction of Worldwide Energy Resource (POWER) Project. https://power.larc.nasa.gov/

National Weather Service. (2021). Centro de Información Meteorológica, Servicios climáticos. https://www.smn.gob.ar/descarga-de-datos

Newman, B.D., Wilcox, B.P., Archer, S. R., Breshears, D.D., Dahm, C.N., Duffy, C. J., ... Vivoni, E. R. (2006). Ecohydrology of water-limited environments: A scientific vision. Water Resources Research, 42(6). http://dx.doi.org/10.1029/2005WR004141

Noy-Meir, I. (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25–51.

Parques Nacionales. (2022). Ministerio de Ambiente y Desarrollo Sostenible. www.argentina.gob.ar/parquesnacionales

Paruelo, J.M., Lauenroth, W.K., Burke, I.C. y Sala, O.E. (1999). Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems, 2, 64–68. https://doi.org/10.1007/s100219900058

Phillips, O.L., Aragão, L.E., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., ... Torres-Lezama, A. (2009). Drought Sensitivity of the Amazon Rainforest. Science, 323(5919), 1344-1347. https://doi.org/10.1126/science.1164033

Reichstein, M. y Carvalhais, N. (2019). Aspects of Forest Biomass in the Earth System: Its Role and Major Unknowns. Surveys in Geophysics, 40, 693–707. https://doi.org/10.1007/s10712-019-09551-x

Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N., ... Zhao, M. (2007). Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis, Global Change Biology, 13(3), 634– 651. https://doi.org/10.1111/j.1365-2486.2006.01224.x

Robinson, T.M.P, La Pierre, K.J., Vadeboncoeur, M.A., Byrne, K. M., Thomey, M. L. y Colby, S. E. (2013). Seasonal, not annual precipitation drives community productivity across ecosystems. Oikos, 122(5), 727–738.

Rouse, J.W., Haas, R.H., Schell, J.A. y Deering, D.W. (1973). Monitoring vegetation systems in the Great plains with ERTS, Third RTS Symposium, NASA, SP-351 I, 309-317. ,https://ntrs.nasa.gov/citations/19740022614

Ruimy, A., Saugier, B. y Dedieu, D. (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 99, 5263-5283.

Sala, O.E., Parton, W.J., Joyce, L.A. y Lauenroth, W.K. (1988). Primary production of the central grassland región of the United States. Ecology, 69, 40–45.

Secretaria de Ambiente y Desarrollo Sustentable de la Nación (SAyDS). (2007). Informe Regional Parque Chaqueño. En Primer inventario nacional de bosques nativos, Proyecto Bosques Nativos y Áreas protegidas BIRF 4085-AR, Argentina. https://www.argentina.gob.ar/sites/default/files/primer_inventario_nacional_-_informe_nacional_1.pdf

Seaquist, J.W, Olsson, L. y Ardö, J. (2003). A remote sensing-based primary production model for grassland biomes. Ecological Modelling, 169, 131–155.

Tálamo, A., Lopez de Casenave, J. y Caziani, S.M. (2012). Components of woody plant diversity in semi-arid Chaco forests with heterogeneous land use and disturbance histories. Journal of Arid Environments, 85, 79-85.

Talamo, A. y Caziani, S.M. (2003). Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. For. Ecol. Manage, 184 (1–3), 79–92. https://doi.org/10.1016/S0378-1127(03)00150-6

TerrSet 2020 Geospatial Monitoring and Modeling Software. (2022). Clark Labs, Clark University.

Vermeire, L.T., Heitschmidt, R.K. y Rinella, M.J. (2009). Primary Productivity and Precipitation-Use Efficiency in Mixed-Grass Prairie: A Comparison of Northern and Southern US Sites. Rangeland Ecol Manage, 62, 230–239. http://dx.doi.org/10.2111/07-140R2.1

White, M.A., Thomton, P.E. y Running, S.W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11, 217-234. https://doi.org/10.1029/97GB00330

Zhang T., Yu G., Chen Z., Hu Z., Jiao C., Yang, M., ... Li, W. (2020). Patterns and controls of vegetation productivity and precipitation-use efficiency across Eurasian grasslands. Science of The Total Environment, 741, 140204, 1-9. https://doi.org/10.1016/j.scitotenv.2020.140204

Zhang, W., Brandt, M., Tong, X., Tian, Q. y Fensholt, R. (2018). Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences, 15, 319–330. https://doi.org/10.5194/bg-15-319-2018

Zhang, X., Moran, S.M., Zhao, X., Liu, S., Zhou, T., Ponce-Campos, G. E. y Liu, F. (2014). Impact of prolonged drought on rainfall use efficiency using MODIS data across China in the early 21st century. Remote Sensing of Environment, 150, 188–197. http://dx.doi.org/10.1016/j.rse.2014.05.003

Publicado

2023-07-04

Cómo citar

Tiedemann, J. L., & Moreira, A. (2023). Productividad primaria neta aérea y eficiencia en el uso de la lluvia del Bosque Semiárido Chaqueño en el Parque Nacional Copo, Santiago del Estero, Argentina. Revista De La Facultad De Agronomía, 122(1), 120. https://doi.org/10.24215/16699513e120