Effect of two strains of Trichoderma sp., salicylic acid and its combination, on the control of Sclerotinia sclerotiorum and on the development and growth of lettuce plants
DOI:
https://doi.org/10.24215/16699513e152Keywords:
biocontrol, disease management, biofertilizers, yield, horticultural cropsAbstract
The objective of this work was: to evaluate the effect of two strains of Trichoderma sp., applications of salicylic acid and its combination for the control of S. sclerotiorum and its effect on the development and growth of lettuce plants under greenhouse conditions. The tests were carried out in an experimental greenhouse of the Facultad de Ciencias Agrarias y Forestales. Lettuce seeds of the “Gallega” variety were used. Eighteen treatments were carried out with 10 plants each. The first 9 were framed within a scenario of ABSENCE of the pathogen to determine the effect of the different treatments on the growth and development of the plants taking into account the possible positive effects of Trichoderma sp., salicylic acid and their combination on the dry weight , fresh and chlorophyll content, while treatments 9-19 were implemented in the PRESENCE of the pathogenic agent to determine the efficiency of the treatments in controlling neck rot. In the treatments with Trichoderma (Tri 22) and with the application of 200 μM AS, significant differences in fresh weight were evident. Regarding dry weight, there were no significant differences between treatments. Furthermore, the results show that there is no effect on the chlorophyll content of the leaves. It was observed that the treatment of 10 µM of AS and strain 22 of T. harzianum showed the lowest values of incidence and severity of lettuce rot at 14 days.
Downloads
References
Akbudak, N. y Basay, S. (29 y 30 de diciembre de 2013). The elicitor response in lettuce [Conferencia]. International Conference on Agriculture and Biotechnology. World Academy of Science, Engineering and Technology. Kuala-Lumpur, Malasia.
Albert, D., Zboralski, A., Ciotola, M., Cadieux, M., Biessy, A., Blom, J. y Filion, M. (2024). Identification and genomic characterization of Pseudomonas spp. displaying biocontrol activity against Sclerotinia sclerotiorum in lettuce. Frontiers in Microbiology, 15, 1-14. http://dx.doi.org/10.3389/fmicb.2024.1304682
Alcalá, A., Fernández, N. y Aguirre, C. (2006). Respuesta del cultivo de lechuga (Lactuca sativa L.) a la fertilización nitrogenada [Trabajo final de grado, Universidad Nacional del Nordeste]. https://redbiblio.unne.edu.ar/pergamo/documento.php?ui=6&recno=47995&id=CABRAL.6.47995
An, C. y Mou, Z. (2011). Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 53(6), 412–428. https://doi.org/10.1111/j.1744-7909.2011.01043.x
Arias, L., Tautiva, L., Piedrahíta, W. y Chaves. B. (2007). Evaluación de tres métodos de control del Moho blanco (Sclerotinia sclerotiorum (Lib.) de Bary) en lechuga (Lactuca sativa L.). Agronomía Colombiana, 25(1), 131-141.
Chabur, M. (2012). Evaluación del efecto de liofilizado de cubios (Tropaeolum tuberosum) en las poblaciones microbianas de suelo como estrategia de manejo de rhizoctoniasis en cultivo de papa [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/11527
Del Rio, A., Mancera, E., Antezana, J., Anaya, L. y Valencia, A. (2023). Agrotóxicos y percepción de riesgos una experiencia de Ciencia Ciudadana en las Cuencas Lerna-Chapala y Patzcuaro-Zirahuen, Michoacan, Mexico. Trenzar, 5(9), 93-106.
El-Khallal, S. M., Hathout, T. A., Ashour, A. E. y Kerrit, A. A. (2009). Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plants grown under salt stress. Research Journal of Agriculture and Biological Sciences, 5, 380-390.
Galvis Rojas, I. F. (2021). Control de la podredumbre del cuello en lechuga mediante el uso de cepas de Trichoderma spp., ácido salicílico y su combinación como herramientas de manejo integrado de la enfermedad [Tesis de maestría, Universidad Nacional de La Plata] https://doi.org/10.35537/10915/127017
Habibi, G. y Vazir, A. (2017). High salicylic acid concentration alters the electron flow associated with photosystem II in barley. Acta Agriculturae Slovenica, 109(2), 393–402. http://dx.doi.org/10.14720/aas.2017.109.2.22
Harman, G. E. (2006). Overview of mechanism and uses of Trichoderma spp. Phytopathology, 96(2), 190–194. https://doi.org/10.1094/PHYTO-96-0190
Hayat, S., Fariduddin, Q., Ali, B. y Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53(4), 433–437. http://dx.doi.org/10.1556/AAGR.53.2005.4.9
Hermosa, R., Viterbo, A., Chet, I. y Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17–25. https://doi.org/10.1099/mic.0.052274-0
Jamal, F., Uddin, H., Ahmad, M. R., Hasan, S. Mahbuba y Roni, A. (2016). Effects of Trichoderma spp. on growth and yield characters of BARI Tomato-14. International Journal of Business, Social and Scientific Research, 4(2), 117–122.
Jiménez, M., Arcia, A., Dilcia, U. y Hernández, A. (2012). Evaluación de Trichoderma spp. y Acibenzolar-S-Metil (Bion®) como inductores de resistencia a la pudrición blanca Sclerotium cepivorum Berk. en ajo (Allium sativum L.) bajo condiciones de campo. Journal of the Selva Andina Research Society, 3(1), 14–25. http://dx.doi.org/10.36610/j.jsars.2012.030100014
León, B., Ortiz, N., Condori, N. y Chura, E. (2018). Cepas de Trichoderma con capacidad endofitica sobre el control del mildiu (Peronospora variabilis Gäum.) y mejora del rendimiento de quinua. Revista de Investigaciones Altoandinas, 20(1), 19-30. http://dx.doi.org/10.18271/ria.2018.327
Martínez, B., Infante, D. y Reyes, Y. (2013). Trichoderma spp. and their role in the control of crop pests. Revista Protección Vegetal, 28(1), 1-15.
Matheron, M. y Porchas, M. (2019). Optimizing Fungicide Inputs for Management of Lettuce Drop Caused by Sclerotinia minor and S. sclerotiorum. Plant Health Progress, 20(4), 238-243. https://doi.org/10.1094/PHP-08-19-0053-RS
McCune, B. y Grace, J. (2002). Analysis of ecological communities. MjM Software.
Mecatti, L., Domingues, E., De Moura, K., Harakava, R. y Rodrigues, F. (2016). Selection of Trichoderma isolates for biological control of Sclerotinia minor and S. sclerotiorum in lettuce. Summa Phytopathol, 42(3), 216-221. http://dx.doi.org/10.1590/0100-5405/2147
Moya, P. (2016). Antagonismo y efecto biocontrolador de Trichoderma spp. sobre Drechslera teres, agente causal de la "mancha en red" de la cebada (Hordeum vulgare L. var. vulgare) [Tesis de doctorado, Universidad Nacional de La Plata]. https://sedici.unlp.edu.ar/handle/10915/60044
Ojaghian, M., Abdlwareth, A., Almoneafy, Z., Guan, X., Zhang, J., Changlin, C. y Li, B. (2013). Application of acetyl salicylic acid and chemically different chitosans against storage carrot rot. Postharvest Biology and Technology, 84, 51–60. https://doi.org/10.1016/j.postharvbio.2013.04.006
Pérez, E. (2014). Estudio de la ruta de shikimato en Trichoderma parareesei, su papel en el antagonismo del hongo y en las relaciones que establece con la planta [Tesis de doctorado, Universidad de Salamanca]. http://hdl.handle.net/10366/127848
Ramírez, A., Poveda, J., Martín, I., Hermosa, R., Monte, E. y Nicolás, C. (2014). Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Molecular Plant Pathology, 15(8), 823-831. http://dx.doi.org/10.1111/MPP.12141
Rolleri, J., Stocco, M., Moya, P. y Mónaco, C. (2021). Posibilidades del uso de Trichoderma harzianum en el biocontrol del marchitamiento y cancro bacteriano del tomate. Revista de la Facultad de Agronomía, 120(2), 080. https://doi.org/10.24215/16699513e080
Saharan, G. y Mehta, N. (2008). Sclerotinia diseases of crop plants: Biology, ecology and disease management. Springer.
Shoresh, M., Harman, G. E. y Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43. http://dx.doi.org/10.1146/annurev-phyto-073009-114450
Smith, D. (2004). Biology and epidemiology of sclerotinia minor on peanut (Arachis hypogaea L.) [Tesis de maestría, North Carolina State University]. http://www.lib.ncsu.edu/resolver/1840.16/810
Stazzonelli, A., Yasem, M. y Ploper L. D. (19-21 de abril de 2017). Capacidad antagónica in vivo de cepas nativas de Trichoderma sobre Sclerotinia sclerotiorum en plantines de lechuga [Conferencia]. 4° Congreso Argentino de Fitopatología. Asociación Argentina de Fitopatólogos. Mendoza, Argentina.
Tassara, C., Lopez, M. y Wright, E. (1998). Ubicación y peso de micelio de Sclerotinia sclerotiorum para producir infección en lechuga (Lactuca sativa). Revista de la Facultad de Agronomía, 18, 85-88.
Uzunova, A. N. y Popova, L. P. (2000). Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 38(2), 243–250 http://dx.doi.org/10.1023/A:1007226116925
Viglianchino, L. y Huarte, D. (2014). Ficha técnica para el cultivo de LECHUGA. Insecticidas/nematicidas/acaricidas, herbicidas, fungicidas, aprobados para su uso. Instituto Nacional de Tecnología Agropecuaria (INTA), Centro Regional Buenos Aires sur.
Vos, C., De Cremer, M., Cammue, K. y De Coninck, B. (2014). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16(4), 400–412. http://dx.doi.org/10.1111/mpp.12189
Wang, D., Pajerowska-Mukhtar, K., Culler, A. y Dong, X. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology, 17(20), 1784–1790. http://dx.doi.org/10.1016/j.cub.2007.09.025
Wu, B. M. y Subbarao, K. V. (2006). Analyses of lettuce drop incidence and population structure of Sclerotinia sclerotiorum and S. minor. Phytopathology, 96(12), 1322-1329. http://dx.doi.org/10.1094/PHYTO-96-1322
Yadav, A., Ghasolia, R., Yadav, S. y Yadav, V. (2017). To elicit systemic acquired resistance by chemical inducers against Sclerotinia sclerotiorum. (Lib.) de Bary. International Journal of Chemical Studies, 5(4), 1551-1553.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Felipe Galvis Rojas, Daniel Giménez, Cecilia Mónaco

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A partir de 2019 (Vol. 118 número 2) los artículos se publicarán en la revista bajo una licencia Creative Commons Atribución- NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.
Previo a esta fecha los artículos se publicaron en la revista bajo una licencia Creative Commons Atribución (CC BY)
En ambos casos, la aceptación de los originales por parte de la revista implica la cesión no exclusiva de los derechos patrimoniales de los/as autores/as en favor del editor, quien permite la reutilización, luego de su edición (posprint), bajo la licencia que corresponda según la edición.
Tal cesión supone, por un lado, que luego de su edición (posprint) en Revista de la Facultad de Agronomía las/os autoras/es pueden publicar su trabajo en cualquier idioma, medio y formato (en tales casos, se solicita que se consigne que el material fue publicado originalmente en esta revista); por otro, la autorización de los/as autores/as para que el trabajo sea cosechado por SEDICI, el repositorio institucional de la Universidad Nacional de La Plata, y sea difundido en las bases de datos que el equipo editorial considere adecuadas para incrementar la visibilidad de la publicación y de sus autores/as.
Asimismo, la revista incentiva a las/os autoras/es para que luego de su publicación en Revista de la Facultad de Agronomía depositen sus producciones en otros repositorios institucionales y temáticos, bajo el principio de que ofrecer a la sociedad la producción científica y académica sin restricciones contribuye a un mayor intercambio del conocimiento global.






















