Conidial production of Purpureocillium lilacinum LPSC # 876 on solid substrates. Effect on Nacobbus aberrans in tomato plants
Keywords:
biological control, nematophagous fungi, root-knot nematodes, solid-state fermentation, agricultural residuesAbstract
Purpureocillium lilacinum (Thom) Samson (Luangsa-ard et al.) has been reported for the control of the root-knot disease caused by Nacobbus aberrans. Artisanal production of biocontrol fungal agents is carried out on solid substrates. The objectives of the present work were to analyze: 1) the production of conidia by P. lilacinum LPSC # 876 grown on different solid substrates with various C/N ratios, and 2) the effect of some of the fermented products obtained containing P. lilacinum conidia on tomato plants (Lycopersicon esculentum Mill.) cv. Platense (cultivated in pots under greenhouse conditions) inoculated with N. aberrans. Conidial production varied depending on the substrates utilized (rice grains, bran and husk, oyster mushroom residue, shrimp shell and sawdust); rice bran (alone or in combination with other substrates) yielded the best results. The maximum conidia production (1010 conidia/g of fermented product) corresponded to C/N ratios from 16:1 to 29:1. Significantndifferences were found on the effect of P. lilacinum onto N. aberrans. Tomato plants inoculated with conidia produced on rice bran mixed with oyster mushroom residue showed the lowest amount of galls, egg masses and eggs per egg masse. Nevertheless, an antagonistic effect on the nematode was not evidenced clearly. Rice bran contains the necessary nutrients for a good conidial production by P. lilacinus although its combination with oyster mushroom residue resulted in higher yields. It is necessary to redesign the experimental strategies to demonstrate the antagonism of P. lilacinus onto N. aberrans.
Downloads
References
Amala, U., T. JiJi & A. Naseema. 2012. Mass multiplication of entomopathogenic fungus, Paecilomyces lilacinus (Thom) Samson with solid substrates. Journal of Biopesticides 5(2): 168-170.
Anastasiadis, I.A., I.O. Giannakou, D.A. Prophetou-Athanasiadou & S.R. Gowent. 2008. The combined effect of the application of biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes. Crop Protection 27: 352-361.
Argerich, C. & L. Troilo. 2011. Manejo del cultivo para cualquier sistema de producción de tomate. En: Manual de buenas prácticas agrícolas en la cadena de tomate. Argerich C. & L. Troilo. FAO, Ciudad Autónoma de Buenos Aires, Argentina. pp. 55-204.
Brand, D., C.R. Soccol, A. Sabu & S. Roussos. 2010. Production of fungal biological control agents through solid state fermentation: a case study on Paecilomyces lilacinus against root-knot nematodes. Micología Aplicada International 22(1): 31-48.
Brand, D., S. Roussos, A. Pandey, P.C. Zilioli, J. Pohl & C.R. Soccol. 2004. Development of a bionematicide with Paecilomyces lilacinus to control Meloidogyne incognita. Applied Biochemistry and Biotechnology 118: 81-88.
Colavolpe, B., G. Casanova, F. Reymnundo, F. Della Vecchia, E. Albertó & A. Iorio F. de. 2012. Utilización de los desechos de la producción de hongos comestibles como co-digestor para la obtener biogas. Avances en Energías Renovables y Medio Ambiente 16: 1-5.
De Araujo, A.A., L.M. Costa, E.C. Muniz, A.J. Nacimento, L.F.H. Lourenco & R. Bergamasco. 2009. Fermentación de residuos de cangrejo y camarón para la obtención de quitinasas en medio sólido. Libro de resúmenes del Congreso Latino Americano de Ingeniería y Ciencias Aplicadas, San Rafael. Disponible en: http://ri.ufs.br/handle/123456789/914. Ultimo acceso: abril 2015.
Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada & C.W. Robledo. 2008. Infostat, versión 2008. Grupo Infostat, FCA, Universidad Nacional de Córdoba, Argentina.
Flores Camacho, R., R.H. Manzanilla López, I. Cid del Prado-Vera & A. Martínez-Garza. 2007. Control de Nacobbus aberrans (Thorne) Thorne y Allen con Pochonia chlamydosporia (Goddard) Gams y Zare. Revista Mexicana de Fitopatología 25(1): 25-34.
FUNICA. 2009. Producción y uso de Paecilomyces lilacinus para el control de nematodos fitoparásitos. Ed. Universidad Nacional Agraria, Fac. de Agronomía. Nicaragua. pp. 1-15.
Ganaie, M.A. & T.A. Khan. 2010. Biological potential of Paecilomyces lilacinus on pathogenesis of Meloidogyne javanica infecting tomato plant. European Journal of Applied Sciences 2(2): 80-84.
Gao, L. & X. Liu. 2010. Nutritional requirements of mycelia growth and sporulation of several biocontrol fungi in submerged and on solid culture. Microbiology (Moscow) 79(5): 622-629.
Gao, L., M.H. Sun, X.Z. Liu & Y.S. Che. 2007. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycological Research III: 87-92.
Gortari, M.C., & R. Hours. 2014. Efecto in vitro de Purpureocillium lilacinum sobre el fitonematodo falso agallador Nacobbus aberrans. Resúmenes del XIII Congreso Argentino de Micología. Buenos Aires. p. 167.
Gortari, M.C., C. Cazau & R. Hours. 2007. Hongos nematófagos de huevos de Toxocara canis en un paseo público de La Plata, Argentina. Revista Iberoamericana de Micología 24: 24-28.
Gulsar Banu, J., R. Iyer & M. Gunasekaran. 2006. Mass multiplication and formulation of a nematophagous fungus, Paecilomyces lilacinus. International Journal of Nematology 16(2): 145-152.
Hölker, U., M. Höfer & J. Lenz. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology Biotechnology 64: 175-186.
Holland, R.J., T.S. Gunasekera, K.L. Williams & K.M.H. Nevelainen. 2002. Ultra structure and properties of Paecilomyces lilacinus spores. Canadian Journal of Microbiology 48: 879-885.
INIDEP. 2015. Instituto Nacional de Investigación y Desarrollo Pesquero. Langostino (Pleoticus muelleri). Disponible en: http://www.inidep.edu.ar/ayuda/langostino-pleoticus-muelleri/. Ultimo acceso: abril 2015.
Kiewnick, S. & R.A. Sikora. 2006. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological Control 38: 179-187.
Lamovsek, J., G. Urek & S. Trdam. 2013. Biological control of root-knot nematodes (Meloidogyne spp.): Microbes against the pests. Acta Agriculturae Slovenica 101: 263-275.
Lax, P., A.G. Becerra, F. Soteras, M. Cabello & M.E. Doucet. 2010. Effect of the arbuscular mycorrhizal fungus Glomus intraradices on the false root-knot nematode Nacobbus aberrans in tomato plants. Biology and Fertility of Soils. DOI 10.1007/s00374-010-0514-4.
Luangsa-ard, J., J. Houbraken, T. Van Doorn, S-B. Hong, A.M. Borman, N.L. Hyel-Jones & R.A. Samson. 2011. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiology Letters 321: 141-149.
Mar, T.T. & S. Lumyong. 2012. Conidial production of entomopathogenic fungi in solid state fermentation. KKU Research Journal 17(5): 762-768.
Martínez, P.F. & D. Roca. 2011. Sustratos para el cultivo sin suelo. Materiales, propiedades y manejo. En: Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo. Flórez R., V.J. (Ed.). Editorial Universidad Nacional de Colombia, Bogotá. pp. 37-77.
Mussatto, S.I., L.F. Ballesteros, S. Martins & A. Teixeira. 2012. Use of Agro-Industrial Wastes in Solid-State Fermentation Processes. En: Industrial Waste. Show K.Y. Ed. Intech. Shanghai, China. pp: 121-140.
Nasr Esfahani, M. & B. Ansari Pour. 2006. The effects of Paecilomyces lilacinus on the pathogenesis of Meloidogyne javanica and tomato plant growth parameters. Iran Agricultural Research 24(2): 67-75.
Pinciroli, M. 2010. Proteínas de arroz. Propiedades estructurales y funcionales. Tesis de Maestría en Ciencia y Tecnología de los Alimentos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata. La Plata, Argentina. 81 pp.
Radwan, M.A., S.A.A. Farrag, M.M. Abu-Elamayem & N.S. Ahmed. 2012. Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Applied Soil Ecology 56: 58-62.
Ragozzino, A & G. D’errico. 2011. Interactions between nematodes and fungi: A concise review. Redia XCIV: 123-125.
Robl, D., L.B. Sung, J.H. Novakivich, P.R.D. Marangoni, M.A.C. Zawadneak, P.R. Dalzolto, J. Gabardo & I.C. Pimentel. 2009. Spore production in Paecilomyces lilacinus (Thom.) Samson strains on agro-industrial residues. Brazilian Journal of Microbiology 40: 296-300.
Rodríguez Almarza, M.B. 2007. Determinación de la composición química y propiedades físicas y químicas del pulido de arroz (Oryza sativa L.). Tesis de Licenciatura. Facultad de Ciencias Agrarias. Escuela de Ingeniería de Alimentos. Universidad Austral de Chile. 44 pp.
Rodríguez, G. 2007. Cultivo de hongos comestibles. Fruticultura & Diversificación 13, Nº 52: 10-14.
Sharma, A., S. Sharma, A. Mittal & S.N. Naik. 2014. Statistical optimization of growth media for Paecilomyces lilacinus 6029 using non-edible oil cakes. Annals of Microbiology 64: 515-520.
Sivila, N & S. Alvarez. 2013. Producción artesanal de Trichoderma. Tecnologías para la agricultura familiar. Tecnologías agroecológicas para la agricultura familiar. Ed. Universitaria de Jujuy. Jujuy. 45 pp.
Sun, M.H. & X.Z. Liu. 2006. Carbon requirements of some nematophagous, entomopathogenic and mycoparasitic hyphomycetes as fungal biocontrol agents. Mycopathologia 161: 295-305.
Valero, A. 2009. Hacia una sustentabilidad global: la eliminación del bromuro de metilo. Foro Internacional Científico Tecnológico EEAOC. INTA, Programa Nacional Cultivos Industriales.
Villalba, P.L., H. Grillo Ravelo & R. Cupull S. 2009. Producción de esporas de Beauveria bassiana (Bálsamo) Vuillemin sobre polvos de arroz, sorgo y maíz. Centro Agrícola 36: 25-32.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 María C. Gortari, Roque A. Hours

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
A partir de 2019 (Vol. 118 número 2) los artículos se publicarán en la revista bajo una licencia Creative Commons Atribución- NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.
Previo a esta fecha los artículos se publicaron en la revista bajo una licencia Creative Commons Atribución (CC BY)
En ambos casos, la aceptación de los originales por parte de la revista implica la cesión no exclusiva de los derechos patrimoniales de los/as autores/as en favor del editor, quien permite la reutilización, luego de su edición (posprint), bajo la licencia que corresponda según la edición.
Tal cesión supone, por un lado, que luego de su edición (posprint) en Revista de la Facultad de Agronomía las/os autoras/es pueden publicar su trabajo en cualquier idioma, medio y formato (en tales casos, se solicita que se consigne que el material fue publicado originalmente en esta revista); por otro, la autorización de los/as autores/as para que el trabajo sea cosechado por SEDICI, el repositorio institucional de la Universidad Nacional de La Plata, y sea difundido en las bases de datos que el equipo editorial considere adecuadas para incrementar la visibilidad de la publicación y de sus autores/as.
Asimismo, la revista incentiva a las/os autoras/es para que luego de su publicación en Revista de la Facultad de Agronomía depositen sus producciones en otros repositorios institucionales y temáticos, bajo el principio de que ofrecer a la sociedad la producción científica y académica sin restricciones contribuye a un mayor intercambio del conocimiento global.






















