Vesicular-arbuscular mycorrhizal symbiosis as an alternative to moderate water stress in tomato (Solanum lycopersicum var. platense)

Authors

  • Marcela Ruscitti Universidad Nacional de La Plata, Argentina
  • Sebastián Garita Universidad Nacional de La Plata, Argentina
  • María Cecilia Arango Universidad Nacional de La Plata, Argentina
  • José Beltrano Universidad Nacional de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina

Keywords:

glomus mosseae, glomus intraradices, proline, malondialdehyde, water stress

Abstract

The water stress causes changes at the cellular level that result in physiological and biochemical alterations and decreased plants growth. The symbiosis between arbuscular mycorrhizal fungi and most of the plants, allows greater absorption of water and nutrients from the extensive network of fungal hyphae that develop inside the root and in the external medium. In this study, we hypothesized that inoculation of tomato plants (Solanum lycopersicum var. Plata) with arbuscular mycorrhizal fungi morigera the effect of moderate to severe water stress. The aim was to check that inoculation with mycorrhizal fungi promotes the growth and metabolism of tomato plants grown with different levels of water deficit and volumes substrate. Tomato plants were grown in 0.5: 1 and 3 kg of substrate, and 3 water situations: field capacity, moderate and severe water stress. The inoculums was: Glomus mosseae and Glomus intraradices A4 and B1; and inactive inoculum was used for control. At the end of the assay the parameters evaluated were: leaf area and accumulation of dry matter, proline and malondialdehyde content. Mycorrhization was with 3 strains, and in all parameters evaluated the mycorrhizal plants showed higher growth respect to non-mycorrhizal plants. Furthermore, levels of proline and malondialdehyde demonstrated that non-mycorrhizal plants were more affected by stress than inoculated plants. The symbiosis with mycorrhizal fungi, results a appropriate strategy to modular the effects of water stress in tomato plants.

Downloads

Download data is not yet available.

References

Alarcón, A.R. & R. Ferreyra-Cerrato. 2000. Biofertilizantes: Importancia y utilización en la agricultura. Ed. Agricultura Técnica Mexicana 26: 191-203.

Al-Karaki, G.N. & R.B. Clark. 1998. Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition 21: 263-276.

Al-Karaki, G.N., R. Hammad & M. Rusan. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 43-47.

Al-Karaki, G., B. McMichael & J. Zak. 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14: 263-269.

Allen, M.F. 2007. Mycorrhizal fungi: highways for water and nutrients in arid soils.Vadose Zone Journal 6: 291-297.

Amini, F. & A.A. Ehsanpour. 2005. Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal Biochemistry & Biotechnology 1: 212-216.

Auge, R.M. 2001. Water relations, drought and vesicular-arbuscularmycorrhizal symbiosis. Mycorrhiza 11: 3 - 42.

Azcón, C. & J.M. Barea. 1997. Applying mycorrhiza biotechnology to horticulture significance and potentials. Scientia Horticulturae, 68: 1-24.

Bago, B., C. Azcon-Aguilar, A. Goulet, & Y. Piche. 1998. Branched absorbing structures. A feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytologist 139: 375-388.

Bago, B., C. Azcón-Aguilar & P. Shachar-Hill. 2000. El micelio externo de la micorriza arbuscular como puente simbiótico entre la raíz y el entorno. Ecología, Fisiología y Biotecnología de la micorriza arbuscular. Eds. A. Alarcón y R. Ferrera-Cerrato. Mundi Prensa Mexico, S.A. de C.V. 78-92 pp.

Bai, T., C. Li, F. Ma, F. Feng & H. Shu. 2010. Responses of growth and antioxidant system to rootzone hypoxia stress in two Malus species. Plant Soil 327: 95-105.

Bartels, D. & R. Sunkar. 2005. Drought and salt tolerance in plants. Critical Reviews in Plant Science 24:1-36.

Baslam, M., N. Goicoechea. 2012. Water déficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22: 347-359.

Bates, L.S., R.P. Waldren & I.D. Tease. 1973. Rapid determination of the proline for stress studies. Plant Soil. 85: 107-129.

Beltrano, J., M. Ronco, M. Salerno, M. Ruscitti & O. Peluso. 2003. Respuesta de plantas de trigo (Triticumaestivum L.) micorrizadas en situaciones de déficit hídrico y de rehidratación del suelo. Revista de Ciencia yTecnología 8: 1-7.

Beltrano, J. & M.G. Ronco. 2008. Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology 20: 29-37.

Beltrano, J., M. Ruscitti, C. Arango, L. Wahnam & M. Ronco. 2012. Interacción fósforo-glifosato. Efecto sobre la producción y partición de shikimico en plantas de tomate (Lycopersicum esculentum l.) Inoculadas con hongos micorricicos arbusculares. Actas de XXIX Reunión Argentina de Fisiología Vegetal, Mar del Plata 17 al 20 de septiembre de 2012.

Cabello, M.N. 2001. Mycorrhizas and Hydrocarbons. En: Fungi in Bioremediation. Ed. G.M. Gadd. Cambridge University Press. pp: 456-471.

Cicek, N. & H. Cakirlar. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgaria Journal of Plant Physiology 28: 66-74.

Dassi, B., E. Dumas-Gaudot, & S. Gianinazzi. 1998. Physiolgy and Molecular Plant Pathology 52:167-183.

Davies, Jr. F.T., J.R. Potter & R.G. Linderman. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. Journal of Plant Physiology 139: 289-294.

Díaz Franco, A., I. Garza Cano, V. Quintero & G.M. Montes. 2008. Respuesta del sorgo a micorriza arbuscular y azospirillum en estrés hídrico. Revista Fitotécnia Mexicana vol 31, Número 001. Sociedad Mexicana de Fitogenética.

De Lacerda, C.F., J. Cambraia, M.A. Oliva & H.A. Ruiz. 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany 54: 69-76.

Duan X., D.S. Neuman, J.M. Reiber, C.D. Green, A.M. Saxton & R.M. Augé. 1996. Mycorrhizal influence on hydraulic and hormonal factor envolved in the control stomatal conductance of mycorrhiza Vigna unguiculata in drying soil. New Phytologist 135: 755-761.

García Petillo, M. 2008. Manejo del riego: uso de instrumentos de medición de agua del suelo y del estado hídrico de los cultivos, presentación de casos de estudio incluso en riego deficitario. Jornadas sobre "Ambiente y Riegos: Modernización y Ambientalidad”, Guatemala, CYTED y AECID.

George, E., H. Marschner & I. Jakobsen. 1995. Role of arbuscular-mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Critical Reviews in Biotechnology 15: 257-270.

Gianinazzi, S., A. Gollotte, M-N Binet, D.van Tuinen, D. Redecker & D. Wipf. 2010 Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20: 519-530.

Giri, B., R. Kapoor & K.G. Mukerji. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K:Na ratios in root and shoot tissues. Microbial Ecology 54: 753-760.

Göbel, C., I. Feussner & S. Rosahl. 2003. Lipid peroxidation during the hypersensitive response in potato in the absence of 9-lypoxygenases. The Journal of Biological Chemistry 278: 52834-52840.

Hare P.D., W.A. Cress & J. Van Staden. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environmental 21:535-53.

Harinasut, P., D. Poonsopa, K. Roengmongkol & R. Charoensataporn. 2003. Salinity effects on antioxidant enzymes in mulberry cultivar.-Science Asia 29: 109- 113.

Harley J.L. & S.E. Smith. 1983. Mycorrhizal symbiosis. Academic Press. Londres, RU. 483 pp

Heath R.L. & L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics 125: 189-198.

Hsiao, C. & F. Breadford. 1983. Phisiological consequences of cellular water deficit en: Limitations to efficient water use in crop production. Londres. Howward.vM. 265p.

Inal, A. 2002. Growth proline accumulation and ionic relations of tomato (Licopersicum esculentum L.) as influence by NaCl and Na2SO4 salinity. Turkish Journal of Botany 26: 285-290.

Juniper, S. & L. Abbott. 1993. Vesicular-arbuscular Mycorrhizas and soil salinity. Mycorrhiza 4: 45-57.

Khalvati M.A., Y. Hu, A. Mozafar, & U. Schmidhalter. 2005. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology 7: 706-712

Lehto, T. & J.J. Zwiazek. 2011. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 90: 21- 71.

Loredo O.C., R.D. López & V. Espinosa. 2004. Microorganismos promotores del crecimiento vegetal. Una Revisión. Terra Latinomericana 22: 225-239

Marulanda, A., R. Azcon & J.M. Luiz-Lozano. 2003. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum 119: 526-533.

Medina, M.Ch., R. Veneros Terrones, E. Araujo Castillo, A. Ramírez Cruz, J. Hidalgo Rodríguez, S.L. Alaya & C. Ramos Otiniano. 2014. Contenido de prolina en Solanum lycopersicum pretratado con glicina betaina y sometido a estrés salino, Vol. 34, núm. 1 Revista De Investigación Científica(Rebiol).

Panozzo, J.F. & H.A. Eagles. 1999. Rate and duration of grain filling and grain nitrogen accumulation of wheat cultivars grown in different environments, Australian Journal of Agricultural Research 50: 1007-1015

Pawlowska, T.E. & I. Charvat. 2004. Heavy–metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied Environmental Microbiology 70: 6643-6649

Pawlowska, T.E. & J.W. Taylor. 2005. Arbuscular mycorrhizal fungi: Hyphal fusion and multigenomic structure (reply). Nature 433(7022): E4 (doi: 10.1038/nature03295)

Phillips, J.M. & D.S. Hayman. 1970. Improved procedure of clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:159-161.

Porcel, R. & J.M. Ruiz-Lozano. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55:1743-1750.

Ronco M.G., M.F. Ruscitti, M.C. Arango & J. Beltrano. 2008. Glyphosate and mycorrhization induce changes in plant growth and in root morphology and architecture in pepper plants (Capsicum annuum L.). The Journal of Horticultural Science and Biotechnology 83: 497-505.

Ruscitti, M., C. Arango, M. Ronco & J. Beltrano. 2011a. Interacción micorrización – salinidad en tomate. Actas del XII Congreso de Micología. XXII Jornadas Argentinas de Micología. Posadas, Misiones, 15-17 de Junio de 2011.

Ruscitti, M., M. Arango, M. Ronco & J. Beltrano. 2011b. Inoculation with mycorrhizal fungi modifies proline metabolism and increases chromium tolerance in pepper plants (Capsicum annuum L.). Brazilian Journal of Plant Physiology 23:15-25.

Ruiz-Lozano, J.M., R. Azcon & M. Gomez. 1995. Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses. Applied and Environmental Microbiology 61: 456-460.

Ruiz-Lozano, J.M. & R. Azcón. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by fungal species and water status. Physiological Plantarum 95: 472-478.

Ruiz-Lozano, J.M. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13: 309-317.

Ruiz-Lozano, J.M. & R. Aroca. 2010. Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Seckbach J, GrubeM, editors. Symbioses and stress: joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. Dordrecht: Springer Science+Business Media. p. 359-374.

Smith, S.E., E. Facelli, S. Pope & F.A. Smith. 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil 326:3-20.

Sánchez-Díaz, M. & M. Honrubia. 1994. Water relations and alleviation of drought stress in mycorrhizal plants. Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. ALS Advances in Life Sciences. pp 167-178.

Shahba, Z., A. Baghizadeh, A. Vakili Seid Mohamad, A. Yazdanpanah & Y. Mehdi. 2010. The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). Journal of Biophysics and Structural Biology 2: 35-41.

Sharp, R.E. 1979. Solute Regulation and growth by roots and shoots of water-stressed maize plants. Planta 147:43-49.

Sieverding, E. 1991. Vesicular-Arbuscular Mycorrhiza management in Tropical Agrosystems. Deutche Gesellschaft für Technische Zusammenarbeit, GTZ N° 224. Eschborn.

Tal, M., A. Katz, H. Heikin & K. Dehan. 1979. Salt tolerance in the wild relatives of the cultivated tomato: proline accumulation in Lycopersicon esculentum mill., L. peruvianum mill. and Solanum pennelli cor. Treated with NaCl and polyethylene glycol. New Phytologist 82: 349-355.

Trouvelot, A., J.L. Kough & V. Gianinazzi-Pearson. 1986. Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de methods d’estimation ayant une signification fonctionelle. En ‘Physiological and genetical aspects of mycorrhizae’. 1er Simposio europeo de micorrizas. INRA, Paris, 101-109.

Downloads

Published

2016-01-30

How to Cite

Ruscitti, M., Garita, S., Arango, M. C., & Beltrano, J. (2016). Vesicular-arbuscular mycorrhizal symbiosis as an alternative to moderate water stress in tomato (Solanum lycopersicum var. platense). Journal of the Agronomy College, 114(2), 219-229. https://revistas.unlp.edu.ar/revagro/article/view/20136