Aplicación de índices de tolerancia a la salinidad en plántulas de maíz

Autores/as

  • Mónica B. Collado Universidad Nacional de La Plata, Argentina
  • Mónica B. Aulicino Universidad Nacional de La Plata, Argentina
  • Miguel J. Arturi Universidad Nacional de La Plata, Argentina
  • María del C. Molina Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Palabras clave:

maíz, plántula, selección, tolerancia a salinidad, estabilidad

Resumen

Los objetivos de este trabajo fueron: estudiar la aplicación de diferentes índices de tolerancia en caracteres de plántulas de maíz y evaluar su posible utilidad en la identificación de genotipos tolerantes a la salinidad. Se probaron 68 accesiones en dos ambientes (0 y 100m MClNa). Se midieron: largo de raíz, vástago y 3ª hoja y peso seco de raíz y de parte aérea. Se incluyeron 6 índices de tolerancia: índice de susceptibilidad al estrés (SSI), índice de tolerancia al estrés (STI), tolerancia al estrés (TOL), media geométrica de la productividad (GMP), productividad media (MP) e índice de estabilidad del rendimiento (YSI). Debido a la variación espacial relacionada con la concentración de sal en ambientes salinos, sería importante identificar genotipos estables frente a una gama amplia de suelos salinos. El biplot agrupó las accesiones, caracteres medidos en ambientes con y sin estrés e índices de tolerancia a sal, y demostró que los índices GMP, MP y STI fueron los que permitieron identificar los accesiones estables que se caracterizan por tener una alta expresión de estos caracteres en ambos ambientes. La aplicación del método de Componentes Principales (CP) identificó a los caracteres peso seco aéreo y largo de raíz como los de mayor contribución y ambos estuvieron asociados con dichos indices de tolerancia a salinidad. De esta manera, en este estudio las accesiones 1, 7, 30, 33, 43 y 45 fueron los más estables para los caracteres peso seco aéreo y largo de raíz. Entre ellos las accesiones 30 y 33 fueron superiores (pertenecientes a genotipos del Grupo A) porque mostraron los escores más altos sobre el eje CP1 pero sus aportes al CP2 fueron bastantes pequeños, para la mayoría de las variables.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Al-Khatib, M., T. McNeilly & J.C. Collins. 1993. The potential for selection abd breeding for improved salt tolerance in Lucerne (Medicago sativa L.). Euphytica 65: 43-51

Anwar, J., G. Subhani, H. Makhdoom, J. Ahmad, H.Mujahid & M. Munir. 2011. Drought tolerance indices and their correlation with yield in exotic wheat genotypes. Pakistan Journal of Botany 43: 1527-1530.

Ashraf, F.M. & T. McNeilly. 1990. Improvement of salt tolerance in maize for selection and breeding. Plant Breeding 104: 101-107.

Ashraf, M.Y., A.H. Khan & A.R. Azmi. 1992. Cell membrane stability and its relation with some physiological process in wheat. Acta Agronomica Hungarica 41: 183-191.

Ashraf, M., T. McNeilly & A.D. Bradshaw. 1994. The potential for evolution of salt tolerance in seven grass species. New Phytologist 103: 299-309.

Ashraf, M.Y., M.H. Naqvi & A.H. Khan. 1996. Evaluation of four screening techniques for drought tolerance in wheat (Triticum aestivum L.). Acta Agronomica Hungarica 44: 213-220.

Ashraf M.Y., A.H. Khan, A.R. Azmi & S.S.M. Naqvi. 1999. Comparison of screening techniques used in breeding for drought tolerance in wheat. In: Proc. New Genetical Approaches to crop improvement II. Ed. Naqvi, S.S.M. pp. 513-525.

Ashraf M.Y., K. Akhtar, G. Sarwar & M. Ashraf. 2002. Evaluation of arid and semi-arid ecotypes of guar (Cyamopsis tetragonoloba L.) for salinity (NaCl) tolerance. Journal Arid Environmental 52: 437-482.

Ashraf, M.Y., M. Ashraf & G. Sarwar. 2005. Response of okra (Hibiscus esculentus ) to drought and salinity stress. In: Vegetables: Growing Environment and Mineral Nutrition. Ed. Dris, R., WFL Publisher (Helsinki, Finland) pp. 166-177.

Ashraf, M.Y., K. Akhter, F. Hussain & J. Iqbal. 2006. Screening of different accessions of three potential grass species from cholistan desert for salt tolerance. Pakistan Journal of Botany 38: 1589-1597.

Azevedo Neto A., J. Tarquinio Prisco, J. Enéas- Filho, C. Lacerda, J. Vieira Silva, P. Alves da Costa & E. Gomes-Filho. 2004. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology 16: 31-38.

Azevedo Neto A., J. Tarquinio Prisco, J. Enéas- Filho, J. Medeiros & E. Gomes-Filho. 2005. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Journal of Plant Physiology 162: 1114-1122.

Azevedo Neto A., J. Tarquinio Prisco, J. Enéas- Filho, C. Abreu & E. Gomes-Filho. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56: 87–94.

Blum, A. 1980. Genetic improvement of drought adaptation. In: Adaptation of plants to water and high temperature stress. N.C. Turner and P.J. Kramer (ed.) John Filey and Sons, New York. pp. 450-452

Bouslama M., & W.T. Schapaugh. 1984. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Sciences 24: 933-937.

Cicek, N. & H. Cakirlar. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology 28: 66-74.

Clarke J., R. De Pauw, T. Townley-Smith. 1992. Evaluation of methods for quantification of drought tolerance in wheat. Crop Sciences 32: 728-732.

Collado, M.B., M.J. Arturi, M.B. Aulicino & M.C. Molina. 2010. Identification of salt tolerance in seedling of maize (Zea mays L.) with the cell membrane stability trait. International Research Journal of Plant Science 1: 126-132.

C.D. Cruz. 2001. Programa Genes: Versao Windows, aplicativo computacional em genética e estadística. UFV Viçosa, Brasil, 2001, pp. 648.

Darvishzadeh, R., A. Pirzad, H. Hatami-Maleki, S. Poormohammad Kiani & A. Sarrafi. 2010. Evaluation of the reaction of sunflower inbred lines and their F1 hybrids to drought conditions using various stress tolerance indices. Spanish Journal of Agricultural Research 8: 1037-1046.

De Costa W., C. Zörb, W. Hartung & S. Schubert. 2007. Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiologia Plantarum 131: 311-321.

Falconer D. & T. Mackay. 1996. Introduction to quantitative genetics. 4th ed., Addison Wesley Longman, Harlow, Essex U.K. pp. 459

Farshadfar E. & J. Sutka. 2002. Multivariate analysis of drought tolerance in wheat substitution lines. Cereal Research Communications 31: 33-39.

Fernandez G.C.J. 1992. Effective selection criteria for assessing plant stress tolerance. In: Proceeding of Symposium. Taiwan, 13-16 Aug. Chapter 25: 257-270.

Fischer R.A. & R. Maurer. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research 29: 897-912.

Fortmeier R. & S. Schubert. 1995. Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant.Cell and Environment 18: 1041-1047.

Gavuzzi, P., F. Rizza, M. Palumbo, R.G. Campanile, G.L. Ricciardi & B. Borghi. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science 77(4): 523-531.

Golabadi, M., A. Arzani & S.A. Mirmohammadi Maibody. 2006. Assessment of drougth tolerance in segregation populations in durum wheat. African Agricultural Journal Research 1: 162-171.

Gholipouri, A., M. Sedghi, R.S. Sharifi & N.M. Nazari. 2009. Evaluation of drought tolerance indices and their relationship with grain yield in wheat cultivars. Recent Research Sciences Technology 1: 195-198.

Igartua, E. 1995. Choice of selection environment for improving crop yields in saline areas. Theoretical and Applied Genetics 91: 1016-1021.

Jafari, A., F. Paknejada & M. Jami AL-Ahmadi. 2009. Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. International Journal of Plant Production 3: 33-38.

Karami, A., M. Ghanadha, M. Naghavi & M. Mardi. 2006. Identification Drought Tolerance Varieties in Barley (Hordeum vulgare L.). Iranian Journal Crop Sciences 37: 371-379.

Khalili, M., M. Kazemi, A. Moghaddam & M. Shakiba. 2004. Evaluation of drought tolerance indices at different growth stages of late-maturing corn genotypes. Proceedings of the 8th Iranian Congress of Crop Science and Breeding. Rasht, Iran, pp. 298.

Kebebew, F. & T. McNeilly. 1994. The genetic basis of variation in salt tolerance in Pearl Millet, Pennisetum americanum L. Leeke. Journal of Genetics Breeding 50: 129-136.

Khan, A.A. & T. McNeilly. 2005. Triple test cross analysis for salinity tolerance based upon seedling root length in maize (Zea mays L.). Breeding Science 55: 321-325.

Kristin A., R. Serna, F. Perez, B. Enriquez & J. Gallegos. 1997. Improving common vean performance under drougth stress. Crop Sciences 37: 51-60.

Maiti, R.K., L.E. Amaya, S.I. Cardona, A.M. Dimas, M.H. de La Rosa-Ibarra & D. Castillo. 1996. Genotypic variability in maize cultivars (Zea mays L.) for resistance to drought and salinity. Journal of Plant Physiology 148: 741-744.

Mitra, J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Sciences 80: 758-762.

Moayedi Ali Akbar, Amru Nasrulhaq Óbice & Syed Shahar Barakbah. 2009. Study on osmotic stress tolerance in promising durum wheat genotypes using drought stress indices. Research Journal of Agriculture and Biological Sciences 5: 603-607.

Nazari, L. & H. Pakniyat. 2010. Assessment of drought tolerance in barley genotypes. Journal of Applied Sciences 10: 151-156.

Nouri, A., A. Etminan, J. Teixeira & R. Mohammadi. 2011. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Sciences 5: 8-16.

Paunescu G. & O. Boghici. 2008. Performance of several wheat cultivars under contrasting conditions of water stress in central part of oltenia. Romanian Agricultural Research 25: 13-19.

Rao, S.A. & T. McNeilly. 1999. Genetic basis of variation for salt tolerance in maize (Zea mays L). Euphytica 108: 145- 450.

Rosielle A.A. & J. Hamblin. 1981. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sciences 21: 943-946.

Sammons, D.J., D.B. Peters & T. Hymowitz. 1978. Screening soybeans for drought resistance. I Growth chamber procedure. Crop Sciences 18: 1050-1055.

Siahsar B., S. Ganjali & M. Allahdoo. 2010. Evaluation of Drought Tolerance Indices and Their Relationship with Grain Yield of Lentil Lines in Droughtstressed and Irrigated Environments. Australian Journal of Basic and Applied Sciences 4: 4336-4346.

Sio-Se Mardeh A., A. Ahmadi, K. Poustini & V. Mohammadi. 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Research 98: 222–229.

Sneath P.H.A. & R.R. Sokal. 1973. Numerical Taxonomy: The principles and practice of numerical classification. In: W.H. Freeman & Co. (eds.). San Francisco.

Souri, J., H. Dehghani & S.H. Sabaghpour. 2005. Study Pea (Pisum sativum L.) Genotypes in Water Stress Condition. Iranian Journal of Agricultural Sciences 36: 1517-1527.

Sokal, R.R. & F.J. Rolf. 1995. Biometry, Third ed. W.H. Freeman and Co., New York.

Talebi R., F. Fayaz & A.M. Naji. 2009. Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). General and Applied Plant Physiology 35: 64–74.

Yan W. & I. Rajcan. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sciences 42: 11-20.

Descargas

Publicado

2015-06-15

Cómo citar

Collado, M. B., Aulicino, M. B., Arturi, M. J., & Molina, M. del C. (2015). Aplicación de índices de tolerancia a la salinidad en plántulas de maíz. Revista de la Facultad de Agronomía, 114(1), 27-37. https://revistas.unlp.edu.ar/revagro/article/view/20176