Insect marking for biological studies

Authors

  • Márcio Martins de Araujo IPEN/USP
  • Fernando Javier Sanhueza Salas Instituto Biológico de São Paulo
  • Valter Arthur Centro de Energia Nuclear na Agricultura (CENA/USP)

DOI:

https://doi.org/10.24215/16699513e093

Keywords:

radioisotopes, stable isotopes, trace elements, dispersion, behavior

Abstract

The marking technique allows studying the behavior and ecological interactions of insects, such as patterns of dispersion and movement, territoriality, handling and consumption of food, vector-parasite associations and food chains and webs. This review describes the advantages and disadvantages of markers, highlighting three methods whose differential is that they remain in the insect regardless of the stage of life. Radioisotopes minimize direct manipulation and trauma to insects, can be applied to large populations and are easily traceable, but their disposal limits field application. Stable isotopes that occur naturally in the environment are not radioactive and are related to ecological studies of trophic levels and metabolic processes, among the most used elements, carbon isotopes mainly reflect the diet of animals; nitrogen isotopes reflect agricultural practices (extensive x intensive) and in part diet and oxygen and hydrogen isotopes are linked to the isotopic composition of water, which, in turn, is dependent on geographic factors such as altitude, climate and latitude . Trace elements are also used as internal (non-radioactive) markers and can vary according to geographic location, changing the amounts found in plants and insects. Therefore, the search for a better methodology to detect the correlation of insects with man and the environment depends on the type of study to be carried out.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Arthur, V.; J.M.M Walder; F.M. Wiendl; A.C.A.M. Precetti; O.F. Teran & B.C. Henrique. (1987). Dispersão de adultos de Sphenophorus levis, 1978 (Col., Curculionidae) em cana-de-açúcar marcados com 32-P. Energia Nuclear e Agricultura 8(1/2): 79-86.

Bailey, S.F.; D.A. Eliason & W.G. Iltis. (1962). Some marking and recovery techniques in Culex tarsalis Coq. flight studies. Mosquito News 22(1): 1-10.

Balagawi, S.; K. Jackson; I.U. Haq; R. Hood-Nowotny; C. Rech & A. Clarke. (2014). Nutritional status and the foraging behaviour of Bactrocera tryoni with particular reference to protein bait spray. Physiological Entomology 39(1): 33-43.

Behera, M.K.; R. Behera & B. Patro. (1999). Application of Dyar's rule to the development of Macrosiphoniella sanborni (Gill.) (Homoptera: Aphididae). Agricultural Science Digest (Karnal) 19: 179-182.

Botteon, V.W. (2018). The use of stable isotope as tracers of Anastrepha fraterculus (Wiedemann, 1830) (Diptera: Tephritidae). Tese de Doutorado. Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Brasil. 102 pp.

Boutton, T.W. (1991). Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. In: Carbon Isotope Techniques. Coleman, D.C. & B. Fry (eds). New York: Academic Press. pp. 173-185.

Bowen, G.J. (2010). Isoscapes: spatial pattern in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences 38: 161-187.

Buscarlet, L.A. (1983). The use of radioactive tracers for insect feeding rate determination. The International Journal of Applied Radiation and Isotopes 34(5): 855-859.

Chang, H.T. (1946). Studies on the use of fluorescent dyes for marking Anopheles quadrimaculatus Say. Mosquito News 6: 122-125.

Conrad, K.F.; K.H. Willson; K. Whitfield; I.F.J. Harvey; C.J. Thomas & T.N. Sherratt. (2002). Characteristics of dispersing Ischnura elegans and Coenagrion puella (Odonata): age, sex, size, morph and ectoparasitism. Ecography 25(4): 439-445.

Deniro, M.J. & S. Epstein. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42(5): 495-506.

Deniro, M.J. & E. Epstein. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45(3): 341-351.

Dietz, A. & E.N. Lambremont. (1970a). A method of studying food consumption of live honey bee larvae by liquid scintillation counting. Annals of the Entomological Society of America 63(5): 1340-1345.

Dietz, A, & E.N. Lambremont. (1970b). Caste determination in honey bees. II. Food consumption of individual honey bee larvae, determined with 32P-labeled royal jelly. Annals of the Entomological Society of America 63(5): 1342-1345.

El Sheikha, A.F. (2019). Tracing insect pests: is there new potential in molecular techniques? Insect Molecular Biology 28(6): 759-772.

Faiman, R.; A. Dao; A.S. Yaro; M. Diallo; S. Djibril; Z.L. Sanogo; Y. Ousmane; M. Sullivan; L. Veru; B.J. Krajacich; A. Krishna; J. Matthews; C.A.M. France; G. Hamer; K.A. Hobson & T. Lehmann. (2019). Marking mosquitoes in their natural larval sites using 2H‐enriched water: a promising approach for tracking over extended temporal and spatial scales. Methods in Ecology and Evolution 10(8): 1274-1285.

Fernandes, O.A. (2002). O Uso de Marcadores no controle Biologico. In: Controle biológico no Brasil: parasitóides e predadores. Parra, J.R.P.; P.S.M. Botelho; B.S. Correia-Ferreira & J.M.S. Bento. Editora Manole Ltda, São Paulo. 595 pp.

Fletcher, T.B. (1936). Marked migrant butterflies. Entomologist’s Record 48: 105-106.

Gillies, M.T. (1961). Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bulletin of Entomological Research 52(1): 99-127.

Girón, F.J. & S. Ríos. (1980). Quasi-Bayesian Behaviour: A more realistic approach to decision making? Trabajos de Estadistica y de Investigacion Operativa 31(1): 17-38.

Hagler, J.R. & C.G. Jackson. (2001). Methods for marking insects: current techniques and future prospects. Annual Review of Entomology 46(1): 511-543.

Hagler, J.R.; A.C. Cohen; D. Bradley-Dunlop & F.J. Enriquez. (1992). New approach to mark insects for feeding and dispersal studies. Environmental Entomology 21(1): 20-25.

Hassett, C.C. & D.W. Jenkins. (1951). The uptake and effect of radiophosphorus in mosquitoes. Physiological Zoology 24(3): 257-266.

Holder, P.W.; R. Frew & R. Van Hale. (2015). The geographic origin of an intercepted biosecurity pest beetle assigned using hydrogen stable isotopes. Journal of Economic Entomology 108(2): 834-837.

Hood-Nowotny, R.; A. Harari; R.K. Seth; S.L. Wee; D.E. Conlong; D.M. Suckling; B. Woods; K. Lebdi-Grissa; G. Simmons & J.E. Carpenter. (2016). Stable isotope markers differentiate between mass-reared and wild Lepidoptera in sterile insect technique programs. Florida Entomologist 99(1): 166-176.

Hopper, K.R. & E.A. Woolson. (1991). Labelling a Parasitic Wasp, Microplitis croceipes (Hymenoptera: Braconidae), with Trace Elements for Mark—Recapture Studies. Annals of the Entomological Society of America 84(3): 255-262.

International Atomic Energy Agency. IAEA. (2009). Manual for the Use of Stable Isotopes in Entomology, Vienna, Austria. 78pp.

Juarez, J.G.; S. Garcia-Luna; L.F. Chaves; E. Carbajal; E. Valdez; C. Avila; W. Tang; E. Martin; R. Barrera; R.R.M. Hemme; J.P. Mutebi; N. Vuong; E.B. Roark; C.R. Maupin; I.E. Badilho-Vargas & G.L. Hamer. (2020). Dispersal of female and male Aedes aegypti from discarded container hábitats using a stable isotope mark-capture study design in South Texas. Scientific Reports 10(1): 1-12.

Kasting, R. & A.J. Mcginnis. (1965). Measuring consumption of food by an insect with carbon-14 labelled compounds. Journal of Insect Physiology 11(9): 1253-1260.

Kettlewell, H.B.D. (1952). Use of radioactive tracer in the study of insect populations (Lepidoptera). Nature 170(4327): 584-585.

Kjeldgaard, M.K.; P.A. Eyer; C.C. Mcmichael; A.A. Bockoven; J.T. King; A. Hyodo; T.W. Boutton; E.L. Vargo & M.D. Eubanks. (2021). Distinct colony boundaries and larval discrimination in polygyne red imported fire ants (Solenopsis invicta). Molecular Ecology 31(3): 1007-1020.

Kumano, N.; K. Tsurui-Sato; K. Teruya & T. Toyosato. (2021). Female Marking via Rubidium-Labeled Ejaculates in the West Indian Sweetpotato Weevil (Coleoptera: Curculionidae). Journal of Economic Entomology 114(3): 1411-1414.

Lavandero, B.; S. Wratten; J. Hagler & M. Jervis. (2004). The need for effective marking and tracking techniques for monitoring the movements of insect predators and parasitoids. International Journal of Pest Management 50(3): 147-151.

Le Gall, M. & S.T. Behmer. (2014). Effects of protein and carbohydrate on an insect herbivore: the vista from a fitness landscape. Integrative and Comparative Biology 54(5): 942–954.

Le Bot, B.; Y. Oulhote; S. Deguen & P. Glorennec. (2011). Using and interpreting isotope data for source identification. Trends in Analytical Chemistry 30(2): 302-312.

Mac Cord, J.R.; P. Jurberg & M.M. Lima. (1983). Marcação individual de triatomíneos para estudos comportamentais e ecológicos. Memórias do Instituto Oswaldo Cruz 78: 473-476.

Maciel-de-Freitas, R.; J.M. Gonçalves & R. Lourenço-de-Oliveira. (2004). Efficiency of rubidium marking in Aedes albopictus (Diptera: Culicidae): preliminary evaluation on persistence of egg labeling, survival, and fecundity of marked female. Memórias do Instituto Oswaldo Cruz 99(8): 823- 827.

Mainali, B.; A.S. Andrew; P.W. Taylor & P. Rempoulakis. (2022). Stable isotopes for reliable identification of wild and mass-reared Queensland fruit flies in sterile insect technique programs. Journal of Pest Science 95:409-422.

Markow, T.A.; S. Anwar & E. Pfeiler. (2000). Stable isotope ratios of carbon and nitrogen in natural populations of Drosophila species and their hosts. Functional Ecology 14(2): 261-266.

Mastrangelo, T. & J. Walder. (2011). Use of radiation and isotopes in insects. In: Radioisotopes– Applications in Bio-Medical Science. Singh, J. Ed. InTech, Rijeka-Croatia. pp. 67-92.

Michener, R. & K. Lajtha. (2007). Stable isotopes in ecology and environmental science. Blackwell Publishing Ltda., 2nd ed. 566 pp.

Moore, S.T.; M.F. Schuster & F.A. Harris. (1974). Radioisotope technique for estimating lady beetle consumption of tobacco budworm eggs and larvae. Journal of Economic Entomology 67(6): 703-705.

Neto, S.S.; O. Nakano; D. Barbin & N.A.V. Nova. (1976). Manual de ecologia dos insetos. Escola Superior de Agricultura “Luiz de Queiroz”. Editora Ceres. 419 pp.

Nienstedt, K.M. & H.M. Poehling. (2004). Prey to predator transfer of enriched 15N‐contents: basic laboratory data for predation studies using 15N as marker. Entomologia Experimentalis et Applicata 112(3): 183-190.

O'brien, R.D. & L.S. Wolfe. (1964). Radiation, radioactivity and insects. Academic Press, New York, USA. 211 pp.

Osborne, J.L.; H.D. Loxdale & I.P. Woiwod. (2002). Monitoring insect dispersal: methods and approaches. In: Dispersal Ecology: The 42nd Symposium of the British Ecological Society held at the University of Reading. Bullock, J.M.; R.E. Kenward & R.S. Hails. Blackell Publishing, Oxford. pp. 24- 49.

Parra, J.R.P.; A.R. Panizzi & M.L. Haddad. (2013). Índices nutricionais para medir consumo e utilização de alimentos por insetos. In: Bioecologia e nutrição de insetos. Panizzi, A.R. & J.R.P. Parra. Embrapa Soja, 2ª edição. 1601 pp.

Patterson, R.S.; B.J. Smittle & R.T. Deneve. (1969). Feeding habits of male southern house mosquitoes on 32P-labeled and unlabeled plants. Journal of Economic Entomology 62(6): 1455-1458.

Prabhu, V.; D. Perez-Staples & P.W. Taylor. (2008). Protein: carbohydrate ratios promoting sexual activity and longevity of male Queensland fruit flies. Journal of Applied Entomology 132(7): 575-582.

Quan, S.F.; W.V. Hartwell; K.G. Scott & C.T. Peng. (1957). Cerium 144 as a Tag for Arthropods of medical Importance. Transactions of the Royal Society of Tropical Medicine and Hygiene 51(1): 87-88.

Querci, O. (1936). Aestivation of Lepidoptera. Entomologist’s Record 48: 122.

Radeleff, R.D.; R.C. Bushland & D.E. Hopkins. (1952). Phosphorus-32 329 Labeling of the Screwworm Fly. Journal of Economic Entomology 45(3): 509-514.

Sgrillo, R.B.; F.M. Wiendl; J.M.M. Walder & V. Arthur. (1977). Técnica para estudos ecológicos da mosca cubana Lixophaga diatraeae Town., com o uso de traçador radioativo. Boletim Científico, CENA, Piracicaba. 17 pp.

Showler, A.T.; R.M. Knaus & T.E. Reagan. (1988). The versatility of radiotracer methods for studying insect ethology and ecology. Florida Entomologist 71(4): 554-580.

Stimmann, M.W. (1974). Marking insects with rubidium: imported cabbageworm marked in the field. Environmental Entomology 3: 327-328.

Van Steenwyk, R.A.; K.Y. Kaneshiro; N.V. Hue & T.S. Whittier. (1992). Rubidium as an internal physiological marker for Mediterranean fruit fly (Diptera: Tephritidae). Journal of Economic Entomology 85(6): 2357-2364.

Wigglesworth, V.B. (1972). The Principles of Insect Physiology. Chapman and Hall Ltd., 7nd ed. 833 pp.

Wilkins, E.E.; S.C. Smith; J.M. Roberts & M. Bebedict (2007). Rubidium marking of Anopheles mosquitoes detectable by field‐capable X‐ray spectrometry. Medical and Veterinary Entomology 21(2): 196-203.

Williams, R.E. (1962). Effect of coloring oviposition media with regard to the mosquito Aedes triseriatus(Say). The Journal of Parasitology 48: 919–925.

Williams Jr, E.C. & D.E. Reichle. (1968). Radioactive tracers in the study of energy turnover by a grazing insect (Chrysochus auratus Fab.; Coleoptera Chrysomelidae). Oikos 19: 10-18.

Zhao, Z.; Z. Lu; G.V.P. Reddy; S. Zhao; G. Lin; J. Ding; J. Wu & Z. Li. (2018). Using hydrogen stable isotope ratios to trace the geographic origin of the population of Bactrocera dorsalis (Diptera: Tephritidae) trapped in northern China. Florida Entomologist 101(2): 244-248.

Zhou, G.; M. Flowers; K. Friedrich; J. Horton; J. Pennington & M.A. Wells. (2004). Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes. Journal of Insect Physiology 50(4): 337-349.

Published

2022-07-14

How to Cite

Martins de Araujo, M., Javier Sanhueza Salas, F., & Arthur, V. (2022). Insect marking for biological studies. Journal of the Agronomy College, 121(1), 093. https://doi.org/10.24215/16699513e093