Selection of local and general hypsometric models for Eucalyptus globulus in stands of the southeast of Buenos Aires province, Argentina

Authors

  • Andrés Hirigoyen Instituto Nacional de Investigación Agropecuaria (INIA) Tacuarembó, Uruguay
  • Bruno César Varela Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Argentina
  • Juan Manuel Cellini Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Argentina
  • Fabio Germán Achinelli Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Argentina Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina

DOI:

https://doi.org/10.24215/16699513e077

Keywords:

prediction, total height, quadratic mean diameter, dominant height, density

Abstract

The objective of this work was to select local and general hypsometric models to estimate total heights (h; m) of Eucalyptus globulus Labill. trees growing in stands of the southeast of Buenos Aires Province, Argentina. Out of 53 candidate models evaluated, 14 were selected for validation. Model fitting and cross-validation were performed from a sample of 236 felled trees, subsequently carrying out an independent validation with height and diameter at breast height (d) data from another sample of 743 individuals, obtained in a non-destructive inventory. Fitting statistics and precision were in general the poorest for local equations. For generalized models, the best results were achieved by incorporating stand variables such as quadratic mean diameter (dg; cm), number of living individuals per hectare (N) and dominant height (H0; m). The inclusion of other variables such as age, site index, maximum diameter, and basal area did not improve the fit and validation indicators. Three models with the best fit and validation statistics were finally selected (R2aj.>0,69; Model efficiency>0,76; Root mean square error<3,3 m), seeking a compromise between prediction quality on the one hand and ease of use on the other. The models were recalibrated for the entire sample of 979 trees, and aimed to cover a wide range of possible uses. For expeditive applications, the local, exponential model 1 was selected. For those users looking for more accurate height estimates without measuring any stand height, the general model 4 was selected, which is based on ddand N. Finally, for those applications that require greater precision, we selected the general model 7, that employ d and H0 as predictor variables. The combined use of models 1, 4 and 7 allows h estimations with relative errors smaller than ±10%, in a range of tree sizes from 2 to 55 cm of d.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Achinelli, F., J. Goya, S. Galarco, L. Larrieu & M. Arturi. 2017. Ajuste preliminar de un modelo de rendimiento para Eucalyptus globulus Labill. en macizos del sudeste de la provincia de Buenos Aires. Actas de las XXXI Jornadas Forestales de Entre Ríos, 5 y 6 de Octubre, Concordia, Entre Ríos, Argentina. 5 pp. Disponible en: http://www.jornadasforestales.com.ar/jornadas/2017/Achinelli-et-al_Modelo-de-rendimiento-para-E-globulus.pdf. Último acceso: julio de 2020.

Achinelli, F. 2018. Análisis de los factores de producción y modelización del rendimiento en plantaciones de Eucalyptus globulus Labill. en el sudeste de la provincia de Buenos Aires. Informe final, Proyecto PIA 14011, Programa de Sustentabilidad y Competitividad Forestal, Proyecto BID 2853/OC-AR. 53 pp.

Assmann, E. 1970. The principles of Forest Yield Study. Pergamon Press, Oxford. 506 pp.

Bellón, S. 2020. Recopilación de ecuaciones hipsométricas para especies forestales nativas y exóticas en la República Argentina. Trabajo final para la Carrera de Ingeniería Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad nacional de La Plata. 157 pp.

Bi, H., V. Jurskis, & J. O’Gara. 2000. Improving height prediction of regrowth eucalypts by incorporating the mean size of site trees in a modified Chapman-Richards equation. Australian Forestry 63: 255-264.

Chave, J., C. Andalo, S. Brown, A. Cairns, J. Chambers, D. Eamus, H. Foïster, F. Fromard, N. Higuchi, T. Kira, J. Lescure, B. Nelson, H. Ogawa, H. Puig, B. Riera, & T. Yamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99.

Cox, F. 1994. Modelos parametrizados de altura. Informe de Convenio Investigación Interempresas. INFORA, Santiago, Chile. 28 pp.

Crescente Campo, F., M. Tomé, P. Soares & U. Diéguez-Aranda. 2010. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management 259(5): 943-952.

Dillon, G. 2000. Aplicación de un conjunto de técnicas silviculturales intensivas en la producción de Eucalyptus globulus. Seminario Internacional del Eucalyptus globulus. Mar del Plata, Argentina. pp. 32-49.

Ercanli, I. 2015. Nonlinear mixed effect models for predicting relationships between total height and diameter of oriental beech trees in Kestel, Turkey. Revista Champingo – Serie Ciencias Forestales y del Ambiente 21(2): 185-202.

Fassola, H., E. Crechi, A. Keller, S. Barth & T. Fernandez. 2007. Funciones y Algoritmos dasométricos para manejo silvícola intensivo, de aplicación en plantaciones forestales orientadas a producción de madera de alto valor agregado. Región Mesopotámica: Pinus elliotti y Eucalyptus grandis. Parcial para Pinus taeda. PAN 571. E.E.A. Montecarlo, INTA. Montecarlo, Misiones, Argentina. Informe técnico N° 61. 103 pp.

Harrison, W.C., T.E. Burk & D.E. Beck. 1986. Individual tree basal area increment and total height equations for Appalachian mixed hardwoods after thinning. Southern Journal of Applied Forestry 10: 99-104.

Hirigoyen, A., J. Franco & U. Diéguez. 2018. Modelo dinámico de rodal para Eucalyptus globulus (L.) en Uruguay. Agrociencia Uruguay 22(1): 63-80.

Köhl, M., S. Magnussen & M. Marchetti. 2006. Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Tropical Forestry Series. Springer-Verlag Berlin, Heidelberg. pp. 39-42.

Leal, S., H. Pereira, M. Grabnerz & R. Wimmert. 2004. Tree-ring structure and climatic effects in young Eucalyptus globulus Labill. grown at two Portuguese sites: preliminary results. Dendrochronologia 21: 139-146.

López, G., P. Pathauer & M. Galetti. 2004. Avances en el desarrollo de germoplasma de Eucalyptus globulus. Sagpya Forestal 30: 2-5.

López Sánchez, C.A., J. Varela, F. Dorado, A. Alboreca, R. Soalleiro, J. Álvarez González & F. Rodríguez. 2003. A height–diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Annals of Forest Science 60: 237-245.

Lumley, L. 2009. Package ‘‘LEAPS’’: Regression subset selection. R package version 2.9. Disponible en: https://cran.r-project.org/web/packages/leaps/leaps.pdf. Último acceso: julio de 2020.

Maggio, A. & J.M. Cellini. 2016. Recopilación de ecuaciones de volumen y biomasa de especies forestales de la República Argentina. Ministerio de Ambiente y Desarrollo Sustentable. Buenos Aires, Argentina. 219 pp.

Marquardt, D.W. 1963. An algorithm for least squares estimation of nonlinear parameters. Journal of the Society of Industrial and Applied Mathematics 2: 431-441.

Methol, R. 2006. SAG globulus: Sistema de apoyo a la gestión de plantaciones de Eucalyptus globulus. Montevideo: INIA, Serie Técnica Nº 158. 34 pp.

Ministerio de Asuntos Agrarios de la Provincia de Buenos Aires. MAA Buenos Aires. 2011. Inventario de macizos forestales de Eucalyptus globulus Labill. en el sudeste de la Provincia de Buenos Aires. 32 pp. Disponible en:http://aulavirtual.agro.unlp.edu.ar/mod/resource/view.php?id=26139. Último acceso: julio de 2020.

Moschini, R., H. Conti, M. Alonso, J. Rodríguez Traverso, V. Nakama & A. Alfieri. 2000. Delimitación de áreas de aptitud climática para el cultivo de eucaliptos en la región pampeana. SAGPyA Forestal 15: 2-11.

Myers, R.H. 1986. Classical and modern regression with applications (2nd Ed.). Duxbury Press, Belmont. 486 pp.

Özçelik, R., Q.V. Cao, G. Trincado & N. Göçer. 2018. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest Ecology and Management 419: 240-248.

Prodan, M., R. Peters, F. Cox & P. Real. 1997. Mensura Forestal. Instituto Interamericano de Cooperación para la Agricultura (IICA), Costa Rica. 561 pp.

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Disponible en: https://www.R-project.org. Último acceso: Julio de 2020.

Soares, P. & M. Tomé. 2002. Height–diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecology and Management 166: 99–109.

Tomé, M. 1988. Modelação do Crescimento da Árvore Individual em Povoamentos de Eucalyptus globulus Labill. (1ª rotação) na Região Centro de Portugal. Tese de Doutoramento em Engenharia Silvícola. Instituto Superior de Agronomía, Lisboa, Portugal. 277 pp.

Tomé, M., F. Ribeiro & S. Faias. 2007. Relação hipsométrica geral para Eucalyptus globulus Labill. em Portugal. Silva Lusitana 15(1): 41-55.

Vanclay, J.K. & J.P. Skovsgaard. 1997. Evaluation of forest growth models. Ecological Modelling 98: 1-12.

Wang, Y. & T.G. Baker. 2007. A regionalised growth model for Eucalyptus globulus plantations in south-eastern Australia. Australian Forestry 70: 93-107.

Zhang L., C. Peng, S. Huang & X. Zhou. 2002. Development and evaluation of ecoregion - based jack pine height - diameter models for Ontario. The Forestry Chronicle 78(4): 530-538.

Published

2021-12-22

How to Cite

Hirigoyen, A., Varela, B. C., Cellini, J. M., & Achinelli, F. G. . (2021). Selection of local and general hypsometric models for Eucalyptus globulus in stands of the southeast of Buenos Aires province, Argentina. Journal of the Agronomy College, 120(2), 077. https://doi.org/10.24215/16699513e077