Xylological structure of new clones of Eucalyptus and its relation to freeze resistance

Authors

  • Pablo Alejandro Cabanillas Universidad Nacional de La Plata, Argentina
  • Rocío Inés Monterubbianesi Organismo Provincial para el Desarrollo Sostenible, Argentina
  • Natalia Tesón Instituto Nacional de Tecnología Agropecuaria, Argentina
  • Silvia Monteoliva Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

DOI:

https://doi.org/10.24215/16699513e141

Keywords:

Eucalyptus grandis, Eucalyptus camaldulensis, GC-INTA-24, GC-INTA-27, frost, juvenile wood

Abstract

The objective of this work was to characterize the qualitative-quantitative wood anatomy of four Eucalyptus (Myrtaceae) genetic materials, which are cultivated in Concordia and to associate the wood characters, theoretically, with differential resistance to frost. The parents, EG-INTA-36 (clone of E. grandis) and E. camaldulensis (from seed), and two of their hybrid clones (GC-INTA-24 and GC-INTA-27) were analyzed. Genetic materials presented qualitative differences in the type of diagonal pore arrangement, the type and amount of parenchyma, and the width of the rays; but not in porosity, perforation plates, vessel-ray pitting, ray composition, fiber contour and wall thickness. The quantitative analysis showed that parental E. camaldulensis presents more similarities with the hybrid GC-INTA-24, and the parental EG-INTA-36 presents more similarities with the hybrid GC-INTA-27. Small vessel diameter, high vessel frequency, thick fiber walls, high proportion of axial parenchyma, and low vulnerability index value presented by GC-INTA-24, would be anatomical indicators of greater tolerance to frost. GC-INTA-27 would be more prone to cavitate under cold conditions due to its high vulnerability index. But under stress-free conditions, it would present greater growth associated with a greater mean diameter and less frequency of vessels. Both hybrids would present superior characteristics against frost stress in comparison to their most vulnerable parent (E. grandis).

Downloads

Metrics

PDF views
126
Nov 01 '24Nov 04 '24Nov 07 '24Nov 10 '24Nov 13 '24Nov 16 '24Nov 19 '24Nov 22 '24Nov 25 '24Nov 28 '244.0
|
HTML views
48
Nov 01 '24Nov 04 '24Nov 07 '24Nov 10 '24Nov 13 '24Nov 16 '24Nov 19 '24Nov 22 '24Nov 25 '24Nov 28 '246.0
|
Other format views
77
Nov 01 '24Nov 04 '24Nov 07 '24Nov 10 '24Nov 13 '24Nov 16 '24Nov 19 '24Nov 22 '24Nov 25 '24Nov 28 '242.0
|

References

Améglio, T., Bodet, C., Lacointe, A. y Cochard, H. (2002). Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiology, 22(17),1211- 1220. https://doi.org/10.1093/treephys/22.17.1211

Aparicio, J. L. y Maggio, A.D. (4- 5 de octubre de 2018). Respuesta a la fertilización con NPK en 5 clones de Eucalyptus grandis en planicies arenosas de Corrientes [Póster]. XXII Jornadas Forestales de Entre Ríos. Concordia, Argentina.

Aparicio, J. L., Larocca, F. y Dalla Tea, F. (2005). Silvicultura de establecimiento de Eucalyptus grandis. Revista IDIA XXI, 8, 64-67.

Assis, T. F. y Mafia, R. G. (2007). Hibridação e clonagem. En A. Borém (Ed.), Biotecnologia florestal (pp. 93-121). Editorial UFV.

Ballesteros, S. I., Berton, J. A., Collado, A. D., Echeverría, J. C., d’ Hiriart, A., Giuletti, J. D., Gómez, M. M., Gómez Hermida, V. F., Jobbagy, E. G. y Nosetto, M. D. (2006). Aptitud Forestal de la Provincia de San Luis. INTA EEA, Gobierno de la Provincia de San Luis.

Balboni, B. M., Batista, A. S., de Aguiar Rodrigues, R. y Garcia, J. N. (2020). Relationship between strength and density in juvenile and mature Eucalyptus sp. wood. Brazilian Journal of Animal and Environmental Research, 3(3), 983-991. https://doi.org/10.34188/bjaerv3n3-019

Barotto, A. J. (2021). Significado funcional de la madera en el género Eucalyptus: relaciones entre microestructura y mecanismos de resistencia a estrés por sequía y heladas. [Tesis de doctorado, Universidad Nacional de La Plata]. http://sedici.unlp.edu.ar/handle/10915/119758

Barotto, A. J., Fernandez, M. E., Gyenge, J., Meyra, A., Martinez-Meier, A. y Monteoliva, S. M. (2016). First insights into the functional role of vasicentric tracheids and parenchyma in Eucalyptus species with solitary vessels: Do they contribute to xylem efficiency or safety? Tree Physiology, 36(12), 1485-1497. https://doi.org/10.1093/treephys/tpw072

Barotto, A. J., Monteoliva, S. y Fernandez, M. E. (29 de septiembre al 5 de octubre de 2019). Análisis interespecífico de la relación entre vulnerabilidad a la cavitación por frío y características anatómicas de la madera en Eucalyptus [Póster]. XXV IUFRO Congress. Curitiba, Brasil.

Brodersen, C. R. y McElrone, A. J. (2013). Maintenance of xylem network transport capacity: A review of embolism repair in vascular plants. Plant Science, 4, 1-11. https://doi.org/10.3389/fpls.2013.00108

Carlquist, S. (1977). Ecological factors in wood evolution: A floristic approach. American Journal of Botany, 64(7), 887-896. https://doi.org/10.1002/j.1537-2197.1977.tb11932.x

Carlquist, S. (2001). Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. (2ª ed.). Springer.

Carlquist, S. (2012). How wood evolves: A new synthesis. Botany, 90 (10), 901-940. https://doi.org/10.1139/b2012-048

Charrier, G., Torres-Ruiz, J. M., Badel, E., Burlett, R., Choat, B., Cochard, H., Delmas, C. E., Domec, J. C., Jansen, S., King, A. y Lenoir, N. (2016). Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Plant Physiology, 172(3),1657–1668. https://doi.org/10.1104/pp.16.01079

Christman, M. A., Sperry, J. S. y Smith, D. D. (2012). Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytologist, 193(3), 713–720. https://doi.org/10.1111/j.1469-8137.2011.03984.x

Cochard, H. y Delzon, S. (2013). Hydraulic failure and repair are not routine in trees. Annals of Forest Science, 70, 659–661. http://dx.doi.org/10.1007/s13595-013-0317-5

Dadswell, H. E. (1972). The anatomy of eucalypt woods. CSIRO.

Davis, S. D., Ewers, F. W., Wood, J., Jamie, J. J. y Kolb, R. (1999). Differential susceptibility to xylem cavitation among three pairs of Ceanothus species in the Transverse Mountain Ranges of southern California. Écoscience, 6(2), 180-186. https://doi.org/10.1080/11956860.1999.11682519

Decourteix, M., Alves, G., Brunel, N., Améglio, T., Guilliot, A., Lemoine, R., Pétel, G. y Sakr, S. (2006). JrSUT1, a putative xylem sucrose transporter, could mediate sucrose influx into xylem parenchyma cells and be up-regulated by freeze-thaw cycles over the autumn-winter period in walnut tree (Juglans regia L.). Plant, Cell and Environment, 29(1), 36-47. https://doi.org/10.1111/j.1365-3040.2005.01398.x

Díaz, D. y Tesón, N. (2001). Unidades de m anejo f orestal en los d epartamentos Federación, Concordia y Colón, del Nordeste de Entre Ríos. INTA EEA.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. W. (2018). InfoStat versión 2018 - Grupo InfoStat, FCA. Universidad Nacional de Córdoba. http://www.infostat.com.ar

Fernández, M., Valenzuela, S. y Balocchi, C. (2006). RAPD and freezing resistance in eucalyptus globulus. Electronic Journal of Biotechnology, 9(3), 303-309. http://dx.doi.org/10.2225/vol9-issue3-fulltext-9

Fernández, M. E., Barotto, A. J., Martínez Meier, A., Gyenge, J. E., Tesón, N., Quiñones Martorello, A. S., Merlo, E., Dalla Salda, G., Rozenberg, P. y Monteoliva, S. (2019). New insights into wood anatomy and function relationships: How eucalyptus challenges what we already know. Forest Ecology and Management, 454, 117638. https://doi.org/10.1016/j.foreco.2019.117638

Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B., Bhaskar, R., Brodribb, T. J., Bucci, S. J., Cao, K. F., Cochard, H., Delzon, S., Domec, J. C., Fan, Z. X., Field, T. S., Jacobsen, A. L., Johnson, D. M., Lens, F., Maherali, H., y Zanne, A. E. (2015 ). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytology, 209(1), 123-136. https://doi.org/10.1111/nph.13646

Hacke, U. G., Sperry, J. S., Wheeler, J. K. y Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26(6), 689-701. https://doi.org/10.1093/treephys/26.6.689

Harwood, C. (2011). New introductions–doing it right. Developing a eucalypt resource: Learning from Australia and elsewhere. Wood Technology Research Centre.

Jacobsen, A. L., Ewers, F. W., Brandon Pratt, R., Paddock, W. A. y Davis, S. D. (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiologist, 139(1), 546-556. http://dx.doi.org/10.1104/pp.104.058404

Johansen, D. (1940). Plant microtechnique. McGraw-Hill.

Lens, F., Sperry, S., Chrisman, M., Choat, B., Rabaey, D. y Jansen, S. (2010). Testing hypotheses that link Wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190(3), 709-723. https://doi.org/10.1111/j.1469-8137.2010.03518.x

Mangieri, H. R. y Dimitri, M. J. (1961). Los eucaliptos en la silvicultura. ACME.

Marcó, M. A. y Harrand, L. (16 y 17 de junio de 2005). Valor potencial de los Eucaliptos colorados en combinaciones híbridas [Póster]. I Jornada sobre Potencialidad Foresto Industrial del Eucalipto en Santiago del Estero. Santiago del Estero, Argentina.

Marcó, M. A. y Harrand, L. (2012). El Programa de Mejora de Eucaliptos del INTA en la Mesopotamia Argentina. En J. A. López (Ed.), Jornadas de actualización técnica. Mejoramiento de pinos y eucaliptos subtropicales (pp. 44-48). Ediciones INTA.

Marcó, M. A., Cortizo, S. C., Fornes L. F., Gauchat, M. E., López, J. A., Lauenstein, D. L. y Poltri, S. M. (2016). Domesticación y mejoramiento de especies forestales. (1ª ed.). INTA.

Martinez, M. S. (2022). Caracterización tecnológica de clones de Eucalipto [Tesis de doctorado, Universidad Nacional de Misiones]. http://handle.net/20.500.12123/13622

Monteoliva, S., Barotto, A. J. y Fernandez, M. E. (2015). Anatomía y densidad de la madera en Eucalyptus: variación interespecífica e implicancia en la resistencia al estrés abiótico. Revista de la Facultad de Agronomía, 114(2), 209-217.

Monteoliva, S., Barotto, A. J., Alarcón, P., Tesón, N. y Fernández, M. E. (2017). Densidad de la madera como variable integradora de la anatomía del leño: análisis de ramas y fuste en cuatro especies de Eucalyptus. Revista de la Facultad de Agronomía, 116(1), 1-11.

Moraga, P., Escobar, R. y Valenzuela, S. (2006). Resistance to freezing in three eucalyptus globulus Labill subspecies. Electronic Journal of Biotechnology, 9(3), 310-314. http://dx.doi.org/10.2225/vol9-issue3-fulltext-24

Nardini, A., Gullo, M. A. L. y Salleo, S. (2011). Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Science, 180(4), 604-611. http://dx.doi.org/10.1016/j.plantsci.2010.12.011

Ogasa, M., Naoko, H. M., Yuki, M. y Yoshikawa, K. (2012). Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiology, 33, 335-344. http://dx.doi.org/10.1093/treephys/tpt010

Oberschelp, G. P. J. (17 de octubre de 2019). Presentan clones de eucalipto con mayor potencial productivo. INTA informa. https://intainforma.inta.gob.ar/presentan-clones-de-eucalipto-con-mayor-potencial-productivo/

Palermo, G. D. M., Latorraca, J. D. F., De Carvalho, A. M., Calonego, F. W. y Severo, E. T. (2015). Anatomical properties of eucalyptus grandis wood and transition age between the juvenile and mature woods. European Journal of Wood and Wood Products, 73, 775-780. http://dx.doi.org/10.1007/s00107-015-0947-4

Paton, D. M. (1981). Eucalyptus physiology. III. Frost Resistance. Australian Journal of Botany, 29(6), 675-688. https://doi.org/10.1071/BT9810675

Ramos, S., De Ruyver, R., Gattinoni, N., Garin, R. y Garran, S. (2018). Síntesis a grometeorológica. INTA.

Salleo, S., Trifilò, P., Esposito, S., Nardini, A. y Lo Gullo, M. A. (2009). Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: A component of the signal pathway for embolism repair? Functional Plant Biology, 36(9), 815–825. http://dx.doi.org/10.1071/FP09103

Salto, C.S. (2008). Variación genética en progenies de polinización abierta de Eucalyptus tereticornis Smith [Tesis de grado, Universidad Nacional de Santiago del Estero]. https://repositorio.inta.gob.ar/handle/20.500.12123/6074

Torres-Ruiz, J. M., Jansen, S., Choat, B., McElrone, A. J., Cochard, H., Brodribb, T. J., Badel, E., Burlett, R., Bouche, P. S., Brodersen, C. R., Li, S., Morris, H. y Delzon, S. (2015). Direct X-Ray microtomography observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiology, 167(1), 40–43. https://doi.org/10.1104/pp.114.249706

Tyree, M. T. y Sperry, S. (1989). Vulnerability of xylem to cavitation and embolism. Physics in Molecular Biology, 40, 19-38. http://dx.doi.org/10.1146/annurev.pp.40.060189.000315

Villegas, M. S. y Rivera, S. M. (2002). Revisión xilológica de las principales especies del género Eucalyptus L'Herit. cultivadas en Argentina. Revista de la Facultad de Agronomía, 105(1), 9-28.

Wheeler, E. A., Baas, P. y Gasson, P. E. (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin, 10(3), 219-332. http://dx.doi.org/10.1163/22941932-90000496

Zanne, E. A., Westoby, M., Falster, D. S., Ackerly, D. D., Loarie, S. R., Arnold, S. E. y Coomes, D. A. (2010). Angiosperm Wood structure: global patterns in vessel anatomy and their relation to Wood density and potential conductivity. American Journal of Botany, 7(2), 207–215. http://dx.doi.org/10.3732/ajb.0900178

Published

2024-11-01

How to Cite

Cabanillas, P. A., Monterubbianesi, R. I., Tesón, N., & Monteoliva, S. (2024). Xylological structure of new clones of Eucalyptus and its relation to freeze resistance. Journal of the Agronomy College, 123(1), 141. https://doi.org/10.24215/16699513e141