Functional anatomy of juvenile wood of Pinus taeda L: genotypic variability and anatomical plasticity in response to water deficit

Authors

  • Nardia Maria Luján Bulfe
  • María Elena Fernández

Keywords:

earlywood, latewood, xylem vulnerability to cavitation, growth ring, wood density

Abstract

Pinus taeda L. achieves high growth rates in the Northeastern region of Argentina, South-America. However, according to that reported for other tree species, both gymnosperms and broadleaves, there may be a tradeoff between productivity and resistance to water deficit, mediated by differences in wood anatomical characteristics that determine the efficiency of water conduction -driving maximum growth- and xylem vulnerability to cavitation – associated to resistance to water deficit. The objective of this study was to analyze the relationships between wood anatomy, wood density and functionality in different genotypes of P. taeda of contrasting growth rate (high (AC) and low (BC)) under optimal and deficit water conditions. Under greenhouse conditions, two treatments of water deficit (moderate and severe) and a control were applied. Measurements of lumen diameter and wall thickness of tracheids, proportion of early and latewood, and wood density were carried out. Curves describing vulnerability to cavitation and estimation of the theoretical specific hydraulic conductivity (ksT) were performed. Genotypes differed in their growth (AC>BC) under optimal water conditions, presenting no significant differences in the morphometry of individual cells but differences in the proportion of early and latewood. Genotype BC1 was the only presenting a lower vulnerability to cavitation (P50 = -2.1 vs. -1.7 Mpa than the other ones, p <0.05). Under water deficit the cell level variables were unchanged, however latewood proportion did increase with no significant impact on ksT. We concluded that at the xylem level, the proportion of early and latewood within the growth ring is the most variable trait both genotypic and phenotypically in response to water deficit. No tradeoff between xylem efficiency and safety was observed in the studied genotypes.

Downloads

Metrics

PDF views
292
Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202624
|

References

Abe, H. & T. Nakai. 1999. Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don. Trees 14: 124-129

Bouche, P.S., M. Larter, J.C. Domec, R. Burlett, P. Grasson, S. Jansen & S. Delzon. 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany 65: 4419-4431

Bulfe, N.M.L. & M.E. Fernández. 2016. Morpho-physiological response to drought of Pinus taeda L. genotypes of contrasting in mean growth rate. New Forests. DOI 10.1007/s11056-016-9524-x.

Choat, B., S. Jansen, T.J. Brodribb, H. Cochard, S. Delzon, R. Bhaskar, S. Bucci, T.S. Field, S.M. Gleason, U.G. Hacke, A.L. Jacobsen, F. Lens, H. Mahelari, J. Martínes-Vilalta, S. Mayr, M. Mencuccini, P.J. Mitchell, A. Nardini, J. Pittermann, R.B. Pratt, J.S. Sperry, M. Westoby, I.J. Wright & A.E. Zanne. 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752-756

Cregg, B.M., P.M. Dougherty & T.C. Hennessey. 1988. Growth and good quality of young loblolly pine trees in relation to stand density and climatic factors. Canadian Journal of Forest Research 18: 851-858

Dalla-Salda, G., M.E. Fernández, A.S. Sergent, P. Rozenberg, E. Badel & A.M. Meier. 2014. Dynamics of cavitation in douglas-fir tree-ring: transition-wood, the lord of the ring? Journal of Plant Hydraulics 1: e-0005

Denne, M.P. 1988. Definition of latewood according to Mork (1928). IAWA Bulletin 10: 59-62

Domec, J.C. & B.L. Gartner. 2002. How do water transport and water storage differ in coniferous earlywood and latewood? Journal of experimental botany 53: 2369-2379

Domec, J.C., B. Lachenbruch & F.C. Meizner. 2006. Bordered pit structure and function determine spatial Patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. American Journal of Botany 93: 1588-1600

Ewers, B.E., R. Oren & J.S. Sperry. 2000. Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant, Cell and Environment 23: 1055-1066

Faustino, L.I., N.M.L. Bulfe, M.A. Pinazo, S.E. Monteoliva & C. Graciano. 2013. Dry partitioning and hydraulic traits in Young Pinus taeda trees fertilized with noitrogen and phosphorus in a subtropical area. Tree Physiology 33: 241-251

García Esteban, L., A. Guindeo Casasús, C. Peraza Oramas & P. de Palacios. 2003. Estructura microscópica de la madera de coníferas. En: La madera y su anatomía. Mundi-Prensa. Madrid, España. 49-69 pp

Gyenge, J. & G. Dalla Salda. 2010. Curvas de vulnerabilidad a la cavitación. En: Técnicas de medición en Ecofisiología vegetal: Conceptos y procedimientos. Ed.: Fernández, M.E. & J. Gyenge. Pp. 70-83

Hacke, U.G. & S. Jansen. 2009. Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist 182: 675-686

Hacke, U.G., J.S. Sperry & J. Pittermann. 2004. Analysis of circular bordered pit function. II. Gymnosperm tracheids with torus-margo pit membranes. American journal of Botany 91: 386-400

Hacke, U.G., J.S. Sperry, W.T. Pockman, S.D. Davis & K.A. McCulloh. 2001. Trends in Wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457-461

Hacke, U.G., J.S. Sperry, B.E. Ewers, D.S. Ellsworth, K.V.R. Schäfer & R. Oren. 2000. Influence of soil porosity on water use in Pinus taeda. Oecologia 124: 495–505

López, J.A. 2005. Mejoramiento genetic de la calidad de la madera. I Jornada sobre potencialidad Foresto-Industrial del Eucalipto en Santiago del Estero, 16 y 17 de junio de 2005

López, J.A. & P.Y. Genes. 2009. Análisis genético de la densidad de la madera de 3 Huertos Semilleros Clonales de Pinus taeda en el Nordeste de Argentina. XIII Congreso Forestal Mundial. 18 al 23 de octubre. Buenos Aires, Argentina

López, J.A. & G.M. Staffieri. 2003. Interacción genotipo-ambiente y heredabilidad de la densidad de la madera de Pinus elliottii var. elliottii en el Nordeste de Argentina. XVIII Jornadas Forestales de Entre Ríos. 23 y 24 de octubre. Concordia, Entre Ríos. Actas en CD

Meinzer, F.C. & K.A. McCulloh. 2013. Xylem recovery from drought-induced embolism: where is the hydraulic point of no return? Tree Physiology 33: 331-334

Meinzer, F.C., D.M. Jhonson, B. Lachenbruch, K.A. McCulloh & D.R. Woodruff. 2009. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology 23: 922-930

Pammenter, N.W. & C. Vander Willigen. 1998. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology 18: 589-593

Pittermann, J., J.S. Sperry, U.G. Hacke, J.K. Wheeler & E.H. Sikkema. 2006a. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. American journal of Botany 93: 1265-1273

Pittermann, J., J.S. Sperry, J.K. Wheeler, U.G. Hacke & E.H. Sikkema. 2006b. Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, cell and Environment 29: 1618-1628

Sperry, J.S. & M.T. Tyree. 1990. Water-stress-induced xylem embolism in three species of conifers. Plant, Cell and Environment 13: 427-436

Sperry, J.S., U.G. Hacke & J. Pittermann. 2006. Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany 93: 1490–1500

Tyree, M.T. 2003. Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees. Trees 17: 95-100

Vergeynst, L.L., M. Dierick, J.A.N. Bogaerts, V. Cnudd & K. Steppe. 2014. Cavitation: a blessing in disguise? New mwthod to establish vulnerability curves and assess hydraulic capacitance of wood tissue. Tree Physiology 35: 400-409

Winck, R.A., H.E. Fassola & M.C. Área. 2015. Efecto del raleo sobre las propiedades anatómicas de la madera de Pinus taeda. Maderas. Ciencia y Tecnología 17: 391-406

Zhu, J.Y., D.W. Wahey & C.T. Scott. 2008. Some observations of wood density and anatomical properties in a Douglas-fir sample with suppressed growth. Wood and Fiber Science 40: 225-232

Zimmermann, M.H. 1983. Xylem structure and the ascent of sap. Springer-Verlag, Berlin. 141 p

Published

2018-11-15

How to Cite

Bulfe, N. M. L., & Fernández, M. E. (2018). Functional anatomy of juvenile wood of Pinus taeda L: genotypic variability and anatomical plasticity in response to water deficit. Journal of the Agronomy College, 116(2). Retrieved from https://revistas.unlp.edu.ar/revagro/article/view/6177

Most read articles by the same author(s)