Parámetros morfológicos y fisiológicos de plantas de pimiento inoculadas con Funneliformis mosseae en condiciones de hidroponía y con altas concentraciones de cobre

Autores/as

  • Marcela Ruscitti Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología Vegetal (INFIVE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata / Escuela de Ciencias Agrarias Naturales y Ambientales Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Argentina
  • Cecilia Arango Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Fisiología Vegetal (INFIVE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (UNLP), Argentina
  • Sebastián Garita Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Fisiología Vegetal (INFIVE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (UNLP), Argentina
  • Valeria Bernardo Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Argentina

DOI:

https://doi.org/10.24215/16699513e009

Palabras clave:

metales pesados, , hongos micorrícicos arbusculares, Capsicum annuum

Resumen

La incorporación de metales pesados al medio como modo de contaminación por el uso de fertilizantes y plaguicidas es una de las problemáticas que más preocupan a las organizaciones vinculadas al monitoreo del ambiente. El cobre es un micronutriente esencial para el crecimiento vegetal, pero en elevadas concentraciones es tóxico. Las micorrizas arbusculares, participan activamente en el metabolismo de los metales pesados, aumentando la tolerancia de las plantas que crecen en sitios contaminados. Se evaluaron las respuestas morfológicas y fisiológicas de plantas de pimiento inoculadas con el hongo micorrícico arbuscular Funneliformis mosseae en concentraciones crecientes de cobre en un cultivo hidropónico. Se realizaron mediciones morfológicas (peso seco, área foliar), fisiológicas (conductancia y resistencia estomática, índice de verdor, temperatura de hoja, conductividad relativa de membranas celulares) y bioquímicas (patrón proteico, contenido de malondialdehído). Las plantas inoculadas con el hongo micorrícico arbuscular toleraron una concentración mayor de cobre que las no inoculadas y esta concentración varió según el parámetro analizado. En general, en las plantas micorrizadas se observó un aumento del umbral de tolerancia al cobre.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Abollino O., Aceto M., Malandrino M., Mentaste E., Sarzanini C. & R. Barberis. 2002. Distribution and mobility of metals in contaminated sites. Chemometric investigation of pollutant profiles. Environ. Pollution 119-127.

Azcón-Bieto, J. & M. Talón. 2000. Fundamentos de Fisiología Vegetal. 522 pág. McGraw Hill. Interamericana.

Bačkor, M.P., M. Váczi, J. Barták, A. Budová & Dzubaj. 2007. Uptake, photosynthetic characteristics and membrane lipid peroxidation levels in the lichen photobiont Trebouxia erici exposed to copper and cadmium. Bryologist 110: 100–107.

Baldantoni, D., A. Alfani, P. Di Tommasi, G. Bartoli & A.V. De San to. 2004. Assessment of macro and microelement accumulation capability of two aquatic plants. Environ Pollution 130(2):149-56.

Barea, J.M., R. Azcón & C. Azcón-Aguilar. 2005. Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma S, eds.Micro-organisms in soils: roles in genesis and functions. Heidelberg, Germany: Springer-Verlag 195-212.

Beltrano, J., M.F. Ruscitti, M.C. Arango & M.G. Ronco. 2013a. Changes in the accumulation of shikimic acid in mycorrhized Capsicum annuum L. grown with application of glyphosate and phosphorus. Theoretical and Experimental Plant Physiology 25: 125-136.

Beltrano, J., M. Ruscitti, M.C. Arango & M. Ronco. 2013b. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Soil Science and Plant Nutrition 13: 123-141.

Bernardo, V., F. Collado, C. Arango, S. Garita & M. Ruscitti, 2018. La inoculación con hongos micorrícicos y la aplicación de ácido salicílico aumentan la tolerancia a cobre en plantas de pimiento. Revista de Investigaciones de la Facultad de Ciencias Agrarias-UNR, (31), 007-016.

Birhane, E., F.J. Sterck, M. Fetene, F .Bongers & T.W. Kuyper. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169(4): 895-904.

Bouazizi, H., H. Jouili, A. Geitmann & E.E.I. Ferjani. 2010. Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotox. Environ. Safe 73: 1304-1308.

Bowler, C., W. Van Camp, M. Van Montagu & D. Inzé. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116.

Cabannes, Y. & M. Dubbeling. 2001. Food security, urban agriculture and urban management. UMP-LAC/UNCHS-HABITAT/IPES New York. City Farmer, Canada's Office of Urban Agriculture.

Cabello, M. 1997. Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiology Ecology 22: 233-236.

Cordier, C., S. Gianinazzi & V. Gianinazzi-Pearson. 1996. Colonisation patterns of root tissues by Phytophthora nicotiana var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185: 223-232.

Dassi, B., E. Dumas-Gaudot & S. Gianinazzi. 1998. Physiol & Molec Plant Pathol 52:167-183.

Davies, F.T., J.D. Puryear, R.J. Newton, J.N. Egilla & J.A.S. Grossi. 2002. Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J. Plant Nutrition 25: 2389-2407.

Doncheva, S., M. Amenós, Ch. Poschenrieder & J. Barceló. 2005. Root cell patterning: a primary target for aluminum toxicity in maize. Journal of Experimental Botany 56: 1213-1220.

Elizarrarás, S.M. 2005. Efecto del aluminio en el crecimiento y desarrollo de la raíz de Arabidopsis thaliana L. Tesis profesional de Biólogo. Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.

Fusconi, A., E. Gnavi, A. Trotta & G. Berta. 1999. Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytologist 142, 505-516.

Gange, A., E. Bower & V. Brown. 1999. Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120: 123-131.

Gaur, A. & A. Adholeya. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science 86:528-534.

Ghaderian, S.M. & A.A.G. Ravandi. 2012. Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration 123, 25-32.

Giuffré, L., S. Ratto, L. Marbán, J. Schonwald & R. Romaniuk. 2005. Riesgo por metales pesados en horticultura urbana. Ciencia del suelo 23(1), 101-106.

Heath, R.L. & L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics 125, 189-198.

Hildebrandt, U., M. Regvar & H. Bothe. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochem 68:139-146

Hoagland, D.R. & D.I. Arnon. 1950. The water culture method for growing plants without soil. California Agriculture Experiment Station Circular 347.

John, R., P. Ahmad, K. Gadgil & S. Sharma. 2012. Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production. 3 (3):65-76.

Jonak, C., H. Nakagami & H. Hirt. 2004. Heavy Metal Stress. Activation of Distinct Mitogen-Activated Protein Kinase Pathways by Copper and Cadmium. Plant Physiology 2004 Oct; 136(2): 3276-3283.

Joner, E.J., R. Briones & C. Leyval. 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227-234.

Kaya, C., M. Ashraf, O. Sonmez, S. Aydemir, A. Levent Tuna & M. Ali Cullu. 2009. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae 121:1-6.

Khan, A.G. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biology 18:355-364.

Krantev, A., Yordanova, R., Janda, T., Szalai, G. & L. Popova. 2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology 165, Issue 9, Pages 920-931.

Laemmli, U.K. 1970. "Cleavage of structural proteins during the assembly of the head of bacteriophage T4," Nature 277:680-85.

Lal, R. 2001. Soil degradation by erosion. Land Degradation & Development 12: 519-539.

Linderman, R.G. 1992. Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ & Linderman RG (Eds) Mycorrhizae in Sustainable Agriculture. ASA Spec. Publ., Madison, Wisconsin. pp 45-70.

Lock, I. & H. de Zeeuw. 2000. Mitigación de los riesgos para la salud asociados con la agricultura urbana y peri-urbana. Conferencias electrónicas "Agricultura urbana y peri-urbana en la agenda política" FAO y ETC-RUAF, 21de Agosto al 30 de Septiembre del 2000: www.RUAF.org website: www.FAO.org/urbanag.

Lutts, S., Kinet, J.M. & J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differin in salinity resistance, Ann. Botany 78:389-398.

Malekzadeh, P., Khara, J. & S. Farshian. 2007. Copper toxicity influence on antioxidant enzymes activity in tomato plants and role of arbuscular mycorrhizal fungus Glomus etunicatum in the tolerance of toxicity. Pakistan Journal of Biological Sciences 10 (12): 2008-2013.

Manoharan, P., Shanmugaiah, V., Balasubramanian, N., Gomathinayagam, S., Sharma, M.P. & K. Muthuchelian. 2010. Influence of AM fungi on the growth and physiological status of Erythrina variegate Linn. grown under different water stress conditions. European Journal of Soil Biology 46:151-156.

Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd edition, Academic Press, London. 889 p

Martínez-Trujillo, M., Sántiz-Gómez, M., Ortiz – Castro, R. & Y. Carreón – Abud. 2009. Efecto del cobre en el crecimiento y la arquitectura de la raíz de Arabidopsis thaliana L. Biológicas (México) 11: 122-131.

McLaughlin, M.J., Parker, D.R. & J.M. Clarke. 1999. Metals and micronutrients—food safety issues, Field Crops Reserch 60, 143-163.

Mirlean, N., Roisenberg, A. & J.O. Chies. 2007. Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ Pollution 149:10-17.

Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. & M. Zia-Ul-Haq. 2015. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research 48:11.

Ocampo, J.A. & J.M. Barea. 1982. Depressed metabolic activity of VA mycorrhizal fungi by photosynthesis inhibitor herbicides, p. 267–270. In: S. Gianinazzi, V. Gianinazzi-Pearson, and A. Trouvelot (eds.). Mycorrhizae, an integral part of plants: Biology and perspectives for their use. INRA Publ. Colloq., France.

Ocampo, J.A. 1993. Influence of pesticides on VA mycorrhizal. p.214-226In: Pesticide–plant pathogen interactions in crop production: beneficial and deleterious effects, CRC Press, Boca Raton, FL.. (Altman, J. ed).

Olivares Rieumont, S., García Céspedes, D., Lima Cazorla, L., Saborit Sánchez, I., Llizo Casals, A. & P. Pérez Álvares. 2013. Niveles de cadmio, plomo, cobre y zinc en hortalizas cultivadas en una zona altamente urbanizada de la ciudad de La Habana, Cuba. Rev. Int. Contam. Ambiental 29 (4) 285-294.

Orlowska, E., Ryszka, P., Jurkiewicz, A. & K. Turnau. 2005. Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonization of plants involved in phytostabilisation of zinc wastes. Geoderma 129: 92-98.

Ortiz-Castro, R., Martínez-Trujillo, M., López-Bucio, J. & C. Cervantes. 2007. Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Science 172: 684-691.

Ouziad, F., Hidebrandt, U., Schmelzer, E. & H. Bothe. 2005. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634-649.

Querejeta, J.I., Barea, J.M., Allen, M.F., Caravaca, F. & A. Roldán. 2003. Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135:510-515.

Quilambo, O.A. 2003. The vesicular-arbuscular mycorrhizal simbiosis. African Journal of Biotechnology Vol. 2 (12), pp 539-546.

Rodríguez, F.I., Esch, J.J., Hall, A.E., Binder, B.M., Schaller, G.E. & A. Bleecker. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283: 996- 998.

Ronco, M.G., Ruscitti, M.F., Arango, M.C. & J. Beltrano. 2008. Glyphosate and mycorrhization induce changes in plant growth and in root morphology and architecture in pepper plants (Capsicum annuum L.). J. Hort. Sc. Biotech 83: 497-505.

Ruscitti, M. 2017. La micorrización modifica la respuesta de las plantas de pimiento en presencia de cobre en el suelo. Tesis para acceder al título de Doctor, Facultad de Cs. Exactas, UNLP.

http://sedici.unlp.edu.ar/bitstream/handle/10915/60324/Documento_completo.pdf-PDFA.pdf?sequence=4&isAllowed=y

Ruscitti, M., Arango, M. & J. Beltrano. 2017. Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theoretical and Experimental Plant Physiology 29(1), 37-49.

Ruscitti, M.F., Arango, M.C., Ronco, M.G. & J. Beltrano. 2011. Inoculation with mycorrhizal fungi Glomus mosseae or G. intraradices- modifies proline metabolism and increases chromium tolerance in pepper plants (Capsicum annuum L.). Brazilian Journal of Plant Physiology 23:15-25

Ruscitti, M., Ronco, M., Arango, C. & J. Beltrano. 2007. Respuesta a la salinidad del suelo y la disponibilidad de fósforo en plantas de pimiento (Capsicum annum L.) inoculadas con Glomus intraradices. VI Encuentro nacional científico técnico de biología del suelo, IV Encuentro sobre fijación biológica de nitrógeno. Río Cuarto, Argentina. ISBN 978-950-665-438-2.

Sannazzaro, A.I., Echeverrìa, M., Albertó, E.O., Ruiz, O.A. & A.B. Menéndez. 2007. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhizal. Plant Physiol Biochem 45:39-46.

Sass, J.E. 1958. Botanical Microtechnique. 3rd. Edition.The Iowa State College Press, Ames, IA, USA. 228 pp.

Smith, S.E. & D.J. Read. 1997. Mycorrhizal Symbiosis. Academic Press, San Diego, CA, USA, 605 pp.

Snijders, C. 1994. Mycotoxins in grain: compounds other tahn aflatoxins. Eagan Press, Minn. Pp 37-58.

Taiz, L. & E. Zeiger. 2006. Plant physiology. 4th ed. Massachusetts: Sinauer Associates, Inc, Sunderland

Thornton, L. 1999. Bioavailability of trace metals in the food chain. The 2nd International Vetiver Conference, Bangkok, Thailand.

Trouvelot, A., Kough, J. & V. Gianinazzi-Pearson. 1986. Mesure du taux de mycorrhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: RIaninazzi-Pearson V, RIaninazzi S (eds), Mycorrhizae: PhysioloRIcal and Genetical Aspects pp.217-221. INRA-Press, Dijon, France.

Upadhyay, R.K. & S.K. Panda. 2009. Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). Comptes Rendus Biologies 332 (7): 623-632.

Vinit-Dunand, F., Epron, D., Alaoui-Sosse´, B. & P. Badot. 2002. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science 163: 53-58.

Wu, Q. & R. Xia. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163: 417-425.

Yadav, S.K. 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants / South African Journal of Botany 76, 167-179.

Yano-Melo, A.M., Maia, L.C., Saggin, J.R., Lima-Filho, J.M. & N.F. Melo. 1999. Effect of arbuscular mycorrhizal fungi on the acclimatization of micro propagated banana plantlets. Mycorrhiza 9:119-123.

Yurekli, F. & Z.B. Porgali. 2006. The effects of excessive exposure to copper in bean plants. Acta Biologica Cracoviensia Series Botanica 48/2: 7-13.

Zhang, H., Lian, C. & Z. Shen. 2009. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Annals of Botany 103: 923-930.

Descargas

Publicado

2019-06-23

Cómo citar

Ruscitti, . M., Arango, C. ., Garita, S., & Bernardo, V. . (2019). Parámetros morfológicos y fisiológicos de plantas de pimiento inoculadas con Funneliformis mosseae en condiciones de hidroponía y con altas concentraciones de cobre. Revista De La Facultad De Agronomía, 118(1), 85–97. https://doi.org/10.24215/16699513e009