Morphometric parameters and photosynthetic performance of in vitro propagated pineapple

Autores/as

  • Marcelo de Souza Marchi Universidade Federal de Santa Catarina, Departamento de Fitotecnia, Florianópolis, SC, Brazil
  • Thiago Sanchez Ornellas Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Florianópolis, SC, Brazil
  • Yohan Fritshe Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Florianópolis, SC, Brazil
  • Miguel Pedro Guerra Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Florianópolis, SC, Brazil; Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais, Curitibanos, SC, Brazil
  • Valdir Marcos Stefenon Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.24215/16699513e098

Palabras clave:

Ananas comosus, biorreactor, micropropagación, fotosíntesis, cultivo in vitro

Resumen

Pineapple (Ananas comosus) is a horticultural species of the Bromeliaceae family of high socioeconomic interest, widely cultivated around the world. The multiplication of pineapple seedlings in the field can be time-consuming, requiring a significant labor investment. The objective of this study was to evaluate the performance of continuous and temporary immersion systems in the micropropagation scale-up of the species. Shoots were obtained from explants subcultured in flasks with gelled culture medium and without gas exchange. The shoots were transferred to liquid MS medium supplemented with 2mM NAA, and 4mM BAP, and cultivated in four different devices: sealed flasks, flasks with semipermeable gas membranes, RITA®, and twin-flasks. After 45 days of cultivation, plant growth, fresh mass increment, the stomatal density of the abaxial surface of the leaves, the maximum quantum yield of the photosystem II, and contents of chlorophyll and carotenoids were analyzed. Significant differences were observed in plant growth, stomatal density, and contents of chlorophyll and carotenoids. The twin-flasks and RITA® devices revealed better results in morphological parameters, such as plant growth and stomatal density, while the treatments in sealed flasks and with membrane stood out in the chlorophyll content.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Baldotto, L.E.B., Baldotto, M.A., Giro V.B., Canellas L.P., Fábio Olivares L., & R. Bressan-Smith (2009). Desempenho do abacaxizeiro 'Vitória' em resposta à aplicação de ácidos húmicos durante a aclimatação. Revista Brasileira de Ciência do Solo 33: 979-990.

Couto, T.R., Silva J.R., Netto, A.T., Carvalho, V.S., & E. Campostrini (2014). Eficiência fotossintética e crescimento de genótipos de abacaxizeiro cultivados in vitro em diferentes qualidades de luz, tipos de frasco de cultivo e concentrações de sacarose. Revista Brasileira de Fruticultura 36: 459-466.

Crestani, M., Barbieri, R.L., Hawerroth, F.J., Carvalho, F.I.X., & A.C. Oliveira (2010). Das Américas para o mundo: Origem, domesticação e dispersão do abacaxizeiro. Ciência Rural 40: 1473-1483.

Damiano, C., La Starza, S.R., Monticelli, S., Gentile, A., Caboni, E., & A. Frattarelli (2005). Propagation of Prunus and Malus by temporary immersion. In: Hvoslef-Eide, A.K., & Preil W. Liquid Culture Systems for in vitro Plant Propagation Dordrecht: Springer p. 243–251.

Escalona, M., Aragón, C.A., Capote, I., Pina, D., Cejas,I., Rodríguez, R., Cañal, M.J., Sandoval, J., Roels, S., Debergh, P., Desjardins, Y., & J. González-Olmedo (2007). Physiology of Effects of Temporary Immersion Bioreactor (TIB) on Micropropagated Plantlets. Acta Horticulturae 748: 95-101.

Escalona, M., Lorenzo, J.C., González, B., Daquinta, M., González, J.L., Desjardins, Y., & C.G. Borroto (1999). Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Reports 18: 743-748.

Evans, J.R. (1988). Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. Functional Plant Biology 15: 93-106.

Hammer, Ø., Harper, D.A., & P.D. Ryan (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-9.

Hwang, H-D., Kwon, S-H., Murthy, H.M., Yun, S-W., Pyo, S-S., & S-Y Park (2022). Temporary Immersion Bioreactor System as an Efficient Method for Mass Production of in vitro Plants in Horticulture and Medicinal Plants. Agronomy 12: 346.

Jiang, Y., Liu, S., Hu, J., He, G., Liu, Y., Chen, X., Lei, T., Li, Q., Yang, L., Li, W., Hu, D., Li, J., & S. Gao (2020). Polyploidization of Plumbago auriculata Lam. in vitro and its characterization including cold tolerance. Plant Cell, Tissue and Organ Culture 140: 315–325.

Kim, N.Y., Hwang, H-D., Kim, J-H., Kwon, B-M., Kim, D., & S-Y. Park (2020). Efficient production of virus-free apple plantlets using the temporary immersion bioreactor system. Horticulture, Environment, and Biotechnology 61: 779-785.

Martins, J.P.R., Santos, E.R., Rodrigues, L.C.A., Gontijo, A.B.P.L., & A.R. Falqueto (2018). Effects of 6-benzylaminopurine on photosystem II functionality and leaf anatomy of in vitro cultivated Aechmea blanchetiana. Biologia Plantarum 62: 793-800.

Murashige, T., & F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.

Scheidt, G.N., Arakaki, A.H., Chimilovski, J.S., Portella, A.C.S., Spier, M.R., Woiciechowski, A.L., Biasi, L.A., & C.R. Soccol (2009). Utilization of the Biorreactor of Immersion by Bubbles at the Micropropagation of Ananas comosus L. Merril. Brazilian Archives of Biology and Technology 52: 37-43.

Scherer, R.F., Holderbaum, D.F., Garcia, A.C., Silva, D.A., Steinmacher, D.A., & M.P. Guerra (2015). Effects of immersion system and gibberellic acid on the growth and acclimatization of micropropagated pineapple. Crop Breeding and Applied Biotechnology 15: 66-71.

Scherer, R.F., Garcia, A.C., Fraga, H.P.F., Dal Vesco, L.L., Steinmacher, D.A., & M.P. Guerra (2013). Nodule cluster cultures and temporary immersion bioreactors as a high performance micropropagation strategy in pineapple (Ananas comosus var. comosus). Scientia Horticulturae 151:38-45.

Silva, A.B., Pasqual, M., Teixeira, J.B., & A.G. Araújo (2007). Métodos de Micropropagação de Abacaxizeiro. Pesquisa Agropecuária Brasileira 42: 1257-1260.

Shinano, T., Lei, T.T., Kawamukai, T., Inoue, M.T., Koike, T., & T. Tadano (1996). Dimethylsulfoxide method for the extraction of chlorophylls a and b from the leaves of wheat, field bean, dwarf bamboo, and oak. Photosynthetica 32: 409-415.

Steinmacher, D.A., Guerra, M.P., Saare-Surminski, K., & R. Lieberei (2011). A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Annals of Botany 108:1463-1475, 2011

Watt, P.M. (2012). The status of temporary immersion system (TIS) technology for plant micropropagation. African Journal of Biotechnology 11: 14025-14035.

Wellburn, A.R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Journal of Plant Physiology 144: 307-313.

Weyers, J.D., & L.G. Johansen (1985). Accurate estimation of stomatal aperture from silicone rubber impressions. New Phytologist 101: 109-115.

Xu, Y., Yang, M., Cheng, F., Liu, S., & Y. Liang (2020). Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biology 20: 269.

Descargas

Publicado

2022-11-29

Cómo citar

de Souza Marchi, M., Sanchez Ornellas, T., Fritshe, Y., Guerra, M. P., & Stefenon, V. M. (2022). Morphometric parameters and photosynthetic performance of in vitro propagated pineapple. Revista De La Facultad De Agronomía, 121(Especial 2), 098. https://doi.org/10.24215/16699513e098

Número

Sección

Biotecnologias Aplicadas a cultivos de interés socio economico