Incorporation of used cooking oil in the manufacture of lightweight expanded clay aggregates

Authors

DOI:

https://doi.org/10.24215/26838559e045

Keywords:

clay, materials, ceramics, LECA, circular economy

Abstract

Lightweight expanded clay aggregates (LECA) are ceramic materials produced from clays and other materials that during heat treatment generate gases that are trapped in the aggregates causing their volume to increase. This bloating process generates a porous structure and a lightweight material, which makes it very versatile for different applications in civil engineering and/or environmental intervention solutions. Incorporating waste from other production processes as raw materials for LECAs that release gas during thermal processing is a further step towards closing production cycles and approaching them from a circular economy perspective.

In this work, LECAs were made from a local clay and cooking oil at laboratory scale and the thermal behavior during processing of these materials, their microstructure, morphology, degree of expansion, density, porosity and water absorption were evaluated.

The results confirm the feasibility and provide the basis for the conceptual engineering in the manufacture of LECA using the proposed strategy. They also permit the establishment of criteria for the processing of these ACLs in terms of the suitability of the starting materials, the formulation ranges and the definitive thermal treatments.

Downloads

Download data is not yet available.

References

A’saf, T. S., Al-Ajlouni, M. G., Ayad, J. Y., Othman, Y. A. y St. Hilaire, R. (2020). Performance of six different soilless green roof substrates for the Mediterranean region. Science of The Total Environment, 730, 139182. https://doi.org/10.1016/j.scitotenv.2020.139182

Ayati, B., Ferrándiz-Mas, V., Newport, D. y Cheeseman, C. (2018). Use of clay in the manufacture of lightweight aggregate. Construction and Building Materials, 162, 124-131. https://doi.org/10.1016/j.conbuildmat.2017.12.018

Bernasconi, A., Marinoni, N., Pavese, A., Francescon, F. y Young, K. (2014). Feldspar and firing cycle effects on the evolution of sanitary-ware vitreous body. Ceramics International, 40(5), 6389-6398. https://doi.org/10.1016/j.ceramint.2013.11.139

Bicer, A. (2021). The effect of fly ash and pine tree resin on thermo-mechanical properties of concretes with expanded clay aggregates. Case Studies in Construction Materials, 15, e00624. https://doi.org/10.1016/j.cscm.2021.e00624

Chien, C.-Y., Show, K.-Y., Huang, C., Chang, Y. J. y Lee, D. J. (2020). Effects of sodium salt additive to produce ultra lightweight aggregates from industrial sludge-marine clay mix: Laboratory trials. Journal of the Taiwan Institute of Chemical Engineers, 111, 105-109. https://doi.org/10.1016/j.jtice.2020.04.018

Dondi, M., Cappelletti, P., D'Amore, M., De Gennaro, R., Graziano, S. F., Langella, A., Raimondo, M. y Zanelli, C. (2016). Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. Construction and Building Materials, 127, 394-409. https://hdl.handle.net/11588/646552

Dondi, M., Raimondo, M. y Zanelli, C. (2014). Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91-109. https://doi.org/10.1016/j.clay.2014.01.013

Dordio, A. y Carvalho, A. J. P. (2013). Constructed wetlands with light expanded clay aggregates for agricultural wastewater treatment. Science of The Total Environment, 463-464, 454-461. https://doi.org/10.1016/j.scitotenv.2013.06.052

Fakhfakh, E., Hajjaji, W., Medhioub, M., Rocha, F., Lopezgalindo, A., Setti, M., Kooli, F. F., Zargouni, F. y Jamoussi, F. (2007). Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science, 35 (3-4), 228-237. https://doi.org/10.1016/j.clay.2006.09.006

Gao, W., Jian, S., Li, X., Tan, H., Li, B., Lv, Y. y Huang, J. (2022). The use of contaminated soil and lithium slag for the production of sustainable lightweight aggregate. Journal of Cleaner Production, 348, 131361. https://doi.org/10.1016/j.jclepro.2022.131361

Grzeszczyk, S. y Janus, G. (2020). Reactive powder concrete with lightweight aggregates. Construction and Building Materials, 263, 120164. https://doi.org/10.1016/j.conbuildmat.2020.120164

Hincapié Henao, Á. M. y Montoya Góez, Y. de J. (2012). La microestructura de los prefabricados de concreto. Revista Universidad EAFIT, 41(140), 95-105. https://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/825

Kazemi, M., Courard, L. y Attia, S. (2023). Water permeability, water retention capacity, and thermal resistance of green roof layers made with recycled and artificial aggregates. Building and Environment, 227, 109776. https://doi.org/10.1016/j.buildenv.2022.109776

Mannu, A., Ferro, M., Pietro, M. E. D. y Mele, A. (2019). Innovative applications of waste cooking oil as raw material. Science Progress, 102(2), 153-160. https://doi.org/10.1177/00368504198542

Maritan, L., Nodari, L., Mazzoli, C., Milano, A. y Russo, U. (2006). Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Applied Clay Science, 31(1-2), 1-15. https://doi.org/10.1016/j.clay.2005.08.007

Mlih, R., Bydalek, F., Klumpp, E., Yaghi, N., Bol, R. y Wenk, J. (2020). Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands – A review. Ecological Engineering, 148, 105783. https://doi.org/10.1016/j.ecoleng.2020.105783

Molineux, C. J., Gange, A. C., Connop, S. P. y Newport, D. J. (2015). Using recycled aggregates in green roof substrates for plant diversity. Ecological Engineering, 82, 596-604. https://doi.org/10.1016/j.ecoleng.2015.05.036

Morseletto, P. (2020). Targets for a circular economy. Resources, Conservation and Recycling, 153, 104553. https://doi.org/10.1016/j.resconrec.2019.104553

Nkansah, M. A., Christy, A. A., Barth, T. y Francis, G. W. (2012). The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water. Journal of Hazardous Materials, 217-218, 360-365. https://doi.org/10.1016/j.jhazmat.2012.03.038

Ozguven, A. y Gunduz, L. (2012). Examination of effective parameters for the production of expanded clay aggregate. Cement and Concrete Composites, 34(6), 781-787. https://doi.org/10.1016/j.cemconcomp.2012.02.007

Papadopulos, F., Spinelli, M., Valente, S., Foroni, L., Orrico, C., Alviano, F. y Pasquinelli, G. (2007). Common Tasks in Microscopic and Ultrastructural Image Analysis Using ImageJ. Ultrastructural Pathology, 31(6), 401-407. https://doi.org/10.1080/01913120701719189

Ponce, J. M. (2003). Estudio de un método para evaluar el deterioro del hormigón afectado por la RAS. Ciencia y Tecnología del Hormigón, (10), 17-26. http://hdl.handle.net/11746/437

Rashad, A. M. (2018). Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, 170, 757-775. https://doi.org/10.1016/j.conbuildmat.2018.03.009

Rodrigues, A. V. y Bragança, S. R. (2023). Technological properties of a self-bloating clay and expanded-clay aggregate for the production of lightweight concrete. Cerâmica, 69(389), 6-16. https://doi.org/10.1590/0366-69132023693893308

Serra, M. F., Conconi, M. S., Suarez, G., Agietti, E. F. y Rendtorff, N. M. (2013). Firing transformations of an argentinean calcareous commercial clay. Cerâmica, 59(350), 254-261. https://doi.org/10.1590/S0366-69132013000200010

Soltan, A. M. M., Kahl, W.-A., Abd EL-Raoof, F., Abdel-Hamid El-Kaliouby, B., Abdel-Kader Serry, M. y Abdel-Kader, N. A. (2016). Lightweight aggregates from mixtures of granite wastes with clay. Journal of Cleaner Production, 117, 139-149. https://doi.org/10.1016/j.jclepro.2016.01.017

Sosa Fabré, E. N., Mocciaro, A., Conconi, M. S. y Rendtorff, N. M. (2022). Desarrollo de fases cristalinas en agregados cerámicos livianos en fase oxidada y fase reducida. En G. Pozo López, M. C. Blanco y V. C. Fuertes (Comps.), Libro de Resúmenes XVII Reunión Anual de la Asociación Argentina de Cristalografía X Taller “Aplicaciones de la Cristalografía en Ciencias de la Tierra”. Desarrollo de fases cristalinas en agregados cerámicos livianos en fase oxidada y fase reducida (p. 80). Universidad Nacional de Córdoba. http://hdl.handle.net/11086/546303

Toledo, R., Dossantos, D., Fariajr, R., Carrio, J., Auler, L. y Vargas, H. (2004). Gas release during clay firing and evolution of ceramic properties. Applied Clay Science, 27(3-4), 151-157. https://doi.org/10.1016/j.clay.2004.06.001

Published

2024-08-14

How to Cite

Sosa Fabre, E., Mocciaro, A., & Rendtorff, N. M. (2024). Incorporation of used cooking oil in the manufacture of lightweight expanded clay aggregates. Social and Technological Development and Innovation, 6, 045. https://doi.org/10.24215/26838559e045

Issue

Section

Dossier: Economía circular. Procesos de reciclado y reuso de materiales