Incorporation of used cooking oil in the manufacture of lightweight expanded clay aggregates
DOI:
https://doi.org/10.24215/26838559e045Keywords:
clay, materials, ceramics, LECA, circular economyAbstract
Lightweight expanded clay aggregates (LECA) are ceramic materials produced from clays and other materials that during heat treatment generate gases that are trapped in the aggregates causing their volume to increase. This bloating process generates a porous structure and a lightweight material, which makes it very versatile for different applications in civil engineering and/or environmental intervention solutions. Incorporating waste from other production processes as raw materials for LECAs that release gas during thermal processing is a further step towards closing production cycles and approaching them from a circular economy perspective.
In this work, LECAs were made from a local clay and cooking oil at laboratory scale and the thermal behavior during processing of these materials, their microstructure, morphology, degree of expansion, density, porosity and water absorption were evaluated.
The results confirm the feasibility and provide the basis for the conceptual engineering in the manufacture of LECA using the proposed strategy. They also permit the establishment of criteria for the processing of these ACLs in terms of the suitability of the starting materials, the formulation ranges and the definitive thermal treatments.
Downloads
References
A’saf, T. S., Al-Ajlouni, M. G., Ayad, J. Y., Othman, Y. A. y St. Hilaire, R. (2020). Performance of six different soilless green roof substrates for the Mediterranean region. Science of The Total Environment, 730, 139182. https://doi.org/10.1016/j.scitotenv.2020.139182
Ayati, B., Ferrándiz-Mas, V., Newport, D. y Cheeseman, C. (2018). Use of clay in the manufacture of lightweight aggregate. Construction and Building Materials, 162, 124-131. https://doi.org/10.1016/j.conbuildmat.2017.12.018
Bernasconi, A., Marinoni, N., Pavese, A., Francescon, F. y Young, K. (2014). Feldspar and firing cycle effects on the evolution of sanitary-ware vitreous body. Ceramics International, 40(5), 6389-6398. https://doi.org/10.1016/j.ceramint.2013.11.139
Bicer, A. (2021). The effect of fly ash and pine tree resin on thermo-mechanical properties of concretes with expanded clay aggregates. Case Studies in Construction Materials, 15, e00624. https://doi.org/10.1016/j.cscm.2021.e00624
Chien, C.-Y., Show, K.-Y., Huang, C., Chang, Y. J. y Lee, D. J. (2020). Effects of sodium salt additive to produce ultra lightweight aggregates from industrial sludge-marine clay mix: Laboratory trials. Journal of the Taiwan Institute of Chemical Engineers, 111, 105-109. https://doi.org/10.1016/j.jtice.2020.04.018
Dondi, M., Cappelletti, P., D'Amore, M., De Gennaro, R., Graziano, S. F., Langella, A., Raimondo, M. y Zanelli, C. (2016). Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. Construction and Building Materials, 127, 394-409. https://hdl.handle.net/11588/646552
Dondi, M., Raimondo, M. y Zanelli, C. (2014). Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91-109. https://doi.org/10.1016/j.clay.2014.01.013
Dordio, A. y Carvalho, A. J. P. (2013). Constructed wetlands with light expanded clay aggregates for agricultural wastewater treatment. Science of The Total Environment, 463-464, 454-461. https://doi.org/10.1016/j.scitotenv.2013.06.052
Fakhfakh, E., Hajjaji, W., Medhioub, M., Rocha, F., Lopezgalindo, A., Setti, M., Kooli, F. F., Zargouni, F. y Jamoussi, F. (2007). Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science, 35 (3-4), 228-237. https://doi.org/10.1016/j.clay.2006.09.006
Gao, W., Jian, S., Li, X., Tan, H., Li, B., Lv, Y. y Huang, J. (2022). The use of contaminated soil and lithium slag for the production of sustainable lightweight aggregate. Journal of Cleaner Production, 348, 131361. https://doi.org/10.1016/j.jclepro.2022.131361
Grzeszczyk, S. y Janus, G. (2020). Reactive powder concrete with lightweight aggregates. Construction and Building Materials, 263, 120164. https://doi.org/10.1016/j.conbuildmat.2020.120164
Hincapié Henao, Á. M. y Montoya Góez, Y. de J. (2012). La microestructura de los prefabricados de concreto. Revista Universidad EAFIT, 41(140), 95-105. https://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/825
Kazemi, M., Courard, L. y Attia, S. (2023). Water permeability, water retention capacity, and thermal resistance of green roof layers made with recycled and artificial aggregates. Building and Environment, 227, 109776. https://doi.org/10.1016/j.buildenv.2022.109776
Mannu, A., Ferro, M., Pietro, M. E. D. y Mele, A. (2019). Innovative applications of waste cooking oil as raw material. Science Progress, 102(2), 153-160. https://doi.org/10.1177/00368504198542
Maritan, L., Nodari, L., Mazzoli, C., Milano, A. y Russo, U. (2006). Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Applied Clay Science, 31(1-2), 1-15. https://doi.org/10.1016/j.clay.2005.08.007
Mlih, R., Bydalek, F., Klumpp, E., Yaghi, N., Bol, R. y Wenk, J. (2020). Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands – A review. Ecological Engineering, 148, 105783. https://doi.org/10.1016/j.ecoleng.2020.105783
Molineux, C. J., Gange, A. C., Connop, S. P. y Newport, D. J. (2015). Using recycled aggregates in green roof substrates for plant diversity. Ecological Engineering, 82, 596-604. https://doi.org/10.1016/j.ecoleng.2015.05.036
Morseletto, P. (2020). Targets for a circular economy. Resources, Conservation and Recycling, 153, 104553. https://doi.org/10.1016/j.resconrec.2019.104553
Nkansah, M. A., Christy, A. A., Barth, T. y Francis, G. W. (2012). The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water. Journal of Hazardous Materials, 217-218, 360-365. https://doi.org/10.1016/j.jhazmat.2012.03.038
Ozguven, A. y Gunduz, L. (2012). Examination of effective parameters for the production of expanded clay aggregate. Cement and Concrete Composites, 34(6), 781-787. https://doi.org/10.1016/j.cemconcomp.2012.02.007
Papadopulos, F., Spinelli, M., Valente, S., Foroni, L., Orrico, C., Alviano, F. y Pasquinelli, G. (2007). Common Tasks in Microscopic and Ultrastructural Image Analysis Using ImageJ. Ultrastructural Pathology, 31(6), 401-407. https://doi.org/10.1080/01913120701719189
Ponce, J. M. (2003). Estudio de un método para evaluar el deterioro del hormigón afectado por la RAS. Ciencia y Tecnología del Hormigón, (10), 17-26. http://hdl.handle.net/11746/437
Rashad, A. M. (2018). Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, 170, 757-775. https://doi.org/10.1016/j.conbuildmat.2018.03.009
Rodrigues, A. V. y Bragança, S. R. (2023). Technological properties of a self-bloating clay and expanded-clay aggregate for the production of lightweight concrete. Cerâmica, 69(389), 6-16. https://doi.org/10.1590/0366-69132023693893308
Serra, M. F., Conconi, M. S., Suarez, G., Agietti, E. F. y Rendtorff, N. M. (2013). Firing transformations of an argentinean calcareous commercial clay. Cerâmica, 59(350), 254-261. https://doi.org/10.1590/S0366-69132013000200010
Soltan, A. M. M., Kahl, W.-A., Abd EL-Raoof, F., Abdel-Hamid El-Kaliouby, B., Abdel-Kader Serry, M. y Abdel-Kader, N. A. (2016). Lightweight aggregates from mixtures of granite wastes with clay. Journal of Cleaner Production, 117, 139-149. https://doi.org/10.1016/j.jclepro.2016.01.017
Sosa Fabré, E. N., Mocciaro, A., Conconi, M. S. y Rendtorff, N. M. (2022). Desarrollo de fases cristalinas en agregados cerámicos livianos en fase oxidada y fase reducida. En G. Pozo López, M. C. Blanco y V. C. Fuertes (Comps.), Libro de Resúmenes XVII Reunión Anual de la Asociación Argentina de Cristalografía X Taller “Aplicaciones de la Cristalografía en Ciencias de la Tierra”. Desarrollo de fases cristalinas en agregados cerámicos livianos en fase oxidada y fase reducida (p. 80). Universidad Nacional de Córdoba. http://hdl.handle.net/11086/546303
Toledo, R., Dossantos, D., Fariajr, R., Carrio, J., Auler, L. y Vargas, H. (2004). Gas release during clay firing and evolution of ceramic properties. Applied Clay Science, 27(3-4), 151-157. https://doi.org/10.1016/j.clay.2004.06.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Evelin Sosa Fabre, Anabella Mocciaro, Nicolás Maximiliano Rendtorff
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publiquen en esta revista aceptan las siguientes condiciones:
La aceptación del manuscrito por parte de la revista implica la no presentación simultánea a otras revistas u órganos editoriales y la cesión no exclusiva de los derechos patrimoniales de los autores en favor del editor, quien permite la reutilización, luego de su edición (postprint), bajo licencia Creative Commons 4.0 (https://creativecommons.org/licenses/by-nc/4.0/deed.es). Usted es libre de:
1) Compartir, copiar y redistribuir el material en cualquier medio o formato.
2) Adaptar, remezclar, transformar y crear a partir del material, bajo los siguientes términos: 1) Atribución — Usted debe darle crédito a esta obra de manera adecuada, proporcionando un enlace a la licencia, e indicando si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo del licenciante. 2) Uso No Comercial — Usted no puede hacer uso del material publicado con fines comerciales.
Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
La responsabilidad de cada trabajo publicado en cuanto a su contenido recae exclusivamente en los autores del mismo, deslindando a los editores de cualquier responsabilidad legal.