Energía renovable: celdas solares de Perovskita

  • Gina Soracá Perez Grupo Integridad y Evaluación de Materiales (GIEM). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ingeniería. Av. Central del Norte 39-115, Tunja. Colombia.
  • Jairo Alberto Gómez 1 Grupo Integridad y Evaluación de Materiales (GIEM). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ingeniería. Av. Central del Norte 39-115, Tunja. Colombia. 2 Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales (INCITEMA) Universidad Pedagógica y Tecnológica de Colombia. Av. Central del Norte 39-115, Tunja. Colombia.
  • Enrique Vera López 1 Grupo Integridad y Evaluación de Materiales (GIEM). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ingeniería. Av. Central del Norte 39-115, Tunja. Colombia. 2 Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales (INCITEMA) Universidad Pedagógica y Tecnológica de Colombia. Av. Central del Norte 39-115, Tunja. Colombia.
Palabras clave: Energía renovable, perovskita híbrida, celda solar de perovskita (PSC)

Resumen

Las perovskitas híbridas han tenido un impacto positivo en el campo de la energía renovable, ya que son consideradas como un material prometedor en celdas solares debido a su bajo costo y alta eficiencia. En este caso las celdas solares de película delgada permiten alcanzar eficiencias significativas (21%)  en relación a las celdas solares de silicio, este rendimiento se atribuye a sus características  como un coeficiente de absorción muy alto, un amplio rango de absorción espectral, una mayor  longitud de difusión, entre otras. Sin embargo se han llevado a cabo investigaciones para corregir el problema de degradación de la perovskita y conocer las causas de su baja estabilidad, lo cual impide su aplicación al aire libre. Esta revisión comprende brevemente los conceptos fundamentales de la perovskita, algunas propiedades y técnicas de deposición para la fabricación de la celda solar.

 

Descargas

La descarga de datos todavía no está disponible.

Citas

M. Khalaji, S. Bakhodaa, R. Saidurbc and H. Hanaeia., “Recent progress in perovskite solar cells”. Renewable and Sustainable Energy Reviews, 81(2), 2018, 2812-2822.

M.A. Green. Silicon solar cells: evolution, high-efficiency design and efficiency enhancements. Semicond Sci Technol, 8 (1). 1993, 1-12

J. J. Britt, and C. Ferekides “Thin‐film CdS/CdTe solar cell with 15.8% efficiency”. Appl Phys Lett, 62, 1993, 2851-2852.

J.S. Shaikh, N.S. Shaikh, A.D. Sheikh, S.S. Mali, A.J. Kale, P. Kanjanaboos, C.K. Hong, J.H. Kim and P.S. Patil.,“Perovskite solar cells: In pursuit of efficiency and stability”. Materials y Desing, 136, 2017, 54-80.

M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Leviand A.W.Y. Ho-Baillie., “Solar cell efficiency tables”. Prog. Photovolt. Res. Appl., 24, 2016, 3-11.

M.A Green, A.W.Y. Ho-Baillie and H.J. Snaith.,“The emergence of perovskite solar cells”. Nat Photo., 8 (7), 2014, 506-514.

H.J Snaith. “Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells”. J. Phys Chem Lett , 4 (21), 2013 , 3623 – 3630.

N.G. Park. “Perovskite solar cells: an emerging photovoltaic technology”. Mater Today , 18 (2), 2015, 65–72.

M. Grätzel. “The light and shade of perovskite solar cells”. Nat Mater, 13 (9), 2014, 838 – 842.

J. Burschka, N. Pellet, S.J. Moon, R.H. Bayer, P. Gao, M.K. Nazeeruddin and M. Grätzel.. “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”. Nature, 499, 2013 , 316 - 319 .

G. Xing, N. Matheus, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S.Mhaisalkar and T.C. Sum., “Long-range balanced electrons and hole transport lengths in organic-inorganic CH3NH3PbI3”. Science, 342, 2013 , 344 – 347.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel and H. Han., “A hole- without conductor, fully printable mesoscopic perovskite solar cell with high stability”. Science, 345, 2014, 295 – 298.

L.M. Pazos-Outon, M. Szumilo, R. Lamboll, J.M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H.J. Beeson, M. Vrucinic, M. Alsari, H.J. Snaith, B. Ehrler, R.H. Friend and F. Deschler., “Photon recycling in lead iodide perovskite solar cells”. Science, 351, 2016, 1430 – 1433.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li and Y. Yang., “Planar heterojunction perovskite solar cells via vapor-assisted solution process”. Chem. Soc. , 136, 2014 , pp. 622 – 625.

M.R. Leyden, L.O. Ono, S.R. Raga, Y. Kato, S. Wang and Y. Qi., “High performance perovskite solar cells by hybrid chemical vapor deposition”. J. Mater. Chem. A , 2, 2014, pp. 18742 – 18745.

M. Liu , M. B. Johnston and H.J. Snaith., “Efficient planar heterojunction perovskite solar cells by vapour deposition¨”. Nature , 501, 2013, 395 – 398.

G. Tong , Z. Song, C, Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Jiang, Y. Sheng, Y. Shi and K. Chen., “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer”. RSC Adv. , 7, 2017, 19457 – 19463.

T.C. Sum and N. Mathews., “Advancements in perovskite solar cells: photophysics behind the photovoltaics”. Energy Environ. Sci., 7, 2014, 2518 – 2534.

A.D. Benli. Perovskite solar cells (review article). Matter, 2, 2015, 40 – 43.

F. Ye, H. Chen, F. Xie, W. Tang, M. Yin, J. He, E. Bi, J. Wang, X. Yang and L. Han., “Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci., 9, 2016, 2295 – 2301.

N.J. Jeon, J. N. Noh, Y.C. Kim, W.S. Yang, S. Ryu and S.I. seok,. “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells”. Nat. Mater. 9(13), 2014 , 897 – 903

G. Giorgi and K. Yamashita., “Zero-dimensional hybrid organic-inorganic halide perovskite modeling: insights from first principles”. J. Phys. Chem. Lett., 7, 2016, 888-899.

M.H. Du. “Efficient in halide perovskites: theoretical perspectives”. J. Mater. Chem. A , 2, 2014 , 9091.

W.J. Yin, J.H. Yang, J. Kang and S.H. Wei., “Halide perovskite materials for solar cells: a theoretical review”. J. Mater. Chem. A, 3, 2015, 8926-8942.

S. Prasanthkumar and L. Giribabu., “Recent Advances in solar cells based on perovskite". Curr. Sci. , 111, 2016 , 1173 – 1177.

P. Umari, E. Mosconi y F. De Angelis., “Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications”. Sci Rep, 4, 2014, 4467.

T. Baikie , Y. Fang, J-M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel and T.J. White., “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications”. J Mater Chem A , 1(18), 2013, 5628 – 5641.

X. Yang, H. Wang, B. Cai and L.Sun., “Progress in hole-transporting materials for perovskite solar cells”. JEC, 27(3), 2018, 650-672.

G. Giorgi, J.I. Fujisawa, H. Segawa and K. Yamashita., “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis”. J Phys Chem Lett, 4 (24), 2013, 4213-4216.

G. E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz and H.J Snaith., “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci. 7, 2014, 982-988.

J. W. Lee, D-J. Seol, A.N. Cho and N-G. Park., “High-efficiency perovskite solar cells based on the black polymorph of CH(NH2)2PbI3”. Adv. Mater. 26, 2014, 4991-4998.

Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen and J. Huang., “Stabilizing the -phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films”, Joule 1, 2017, 371- 382.

T. Zhang, M.I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel and Y. Zhao., “Bication lead iodide 2D perovskite component to stabilize inorganic -CsPbI3 perovskite phase for high-efficiency solar cells”. Sci. Adv. 3, 2017, 1700841.

Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu and S. Zhang., “Bismuth incorporation stabilized  CsPbI3 for fully inorganic perovskite solar cells, ACS Energy Lett. 2, 2017, 2219-2227.

G. E. Eperon, G.M. Paternó, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli and H.J. Snaith., “Inorganic caesium lead iodide perovskite solar cells”, J. Mater. Chem. A 3, 2015, 19688-19695.

P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu and Y. Lu., “Solvent engineering for ambientair-processed, phase-stable CsPbI3 in perovskite solar cells”, J. Phys. Chem. Lett. 7, 2016, 3603-3608.

A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti and J.M. Luther., “Quantum dot-induced phase stabilization of α- CsPbI3 perovskite for high-efficiency photovoltaics”. Science 354, 2016, 92-95.

J. Liang,C. Wang, P. Zhao, Z. Lu, Y. Ma, Z. Xu, Y. Wang, H. Zhu, Y. Hu, G. Zhu, L. Ma, T. Chen, Z. Tie and Z. Yin., ” Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices”, Nanoscale 9, 2017, 11841-11845.

T.M. Koh , K. Fu, Y. Fang, S. Chens, T.C. Sums, N.M. Mathews, S.G. Mhaisalkar, P.P. Boix and T. Baikie “Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C , 118, 2014 , 16458 – 16462.

S. Pang , H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu and G. Cui., ”NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells”. Chem. Mater. , 26, 2014, 1485 – 1491.

R. Gottesman, L. Gouda, B.S. Kalanoor, E. Haltzi, S. Tirosh, E. R-Hodesh, Y. Ticshler and A. Zaban.,“Photo induced Reversible Structural Transformations in Free-Standing CH3NH3PbI3 Perovskite Films. J. Phys. Chem. Lett., 6 (12), 2015, 2332-2338.

J.H. Im, I-H. Jang, N. Pellet, M. Grätzel and N-G. Park., “Growth of CH3NH3PbI3 cuboids with controlled size for high-PCE perovskite solar cells. Nat. Nanotechnol., 9, 2014, 927-932.

V.E. Madhavan, I. Zimmermann, C. R-Carmona, G. Grancini, M. Buffiere, A. Belaidi and M.K. Nazeeruddin., “Copper thiocyanate inorganic hole-transporting material for high-PCE perovskite solar cells. ACS Energy Lett., 1, 2016, 1112-1117.

M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami and H.J. Snaith., “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338 (6107), 2012, 643-647.

J.Y. Jeng, K-C. Chen, T-Y. Chiang, P-Y. Lin, T-D. Tsai, Y-C. Chorng, T-F. Guo, P. Chen, T-C. Wen and Y-J. Hsu.,“Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar‐heterojunction hybrid solar cells”. Adv Mater 26 (24), 2014, 4107–4113.

M. Xiao, D.F. Huang, W. Huang, Y. Dkhissi, D.Y. Zhu, J. Etheridge, A. G-Weale, U. Bach, Y-B. Cheng and L. Spiccia., “A fast deposition-crystallization procedure for highly effi- cient lead iodide perovskite thin-film solar cells”, Angew. Chem. 126, 2014, 10056–10061.

Publicado
2019-02-26
Cómo citar
Soracá Perez, G., Gómez, J. A., & Vera López, E. (2019). Energía renovable: celdas solares de Perovskita. Investigación Joven, 5(2), 16-19. Recuperado a partir de https://revistas.unlp.edu.ar/InvJov/article/view/5867
Sección
Recopilaciones temáticas