Arugula: Refrigerated storage to extend its postharvest shelf life
Keywords:
Eruca sp, cold storage, shelf lifeAbstract
Arugula (Eruca sp.) has been incorporated into Uruguayan production systems in the last two decades, particularly in organic production, but it has a short shelf life (4 days) due to inadequate postharvest management. Therefore, the aim of this study was to validate refrigerated storage for local arugula leaves production and marketable conditions in order to increase their postharvest life. The main problems in the quality of the leaves were characterized and quantified based on their overall appearance, weight loss (WL), total soluble solids (TSS), total phenolic content (TP), total antioxidant capacity (TAC), color, chlorophylls and total carotenoids, under refrigerated storage (RS) (4 °C and 95% RH) and after 3 or 4 days at room temperature (RT) (20 °C and 75% RH). For each refrigerated storage time (0, 3, 6, 9, 12, 16, 20, 24, 27 days) and room temperature time (0+3; 3+3; 6+3; 9+3; 12+4; 16+4; 20+4; 24+3 days), defect-free leaves were stored in three polypropylene bags (50 ± 5 g of arugula leaves). The results showed that by applying adequate refrigerated treatment, it would be possible to increase the shelf life of arugula leaves in current production systems by 2.25 times, with minimal reduction in their bioactive compounds.
Downloads
References
FAO (Organización de las Naciones Unidas para la Alimentación y Agricultura”. “Transformar la alimentación y la agricultura para alcanzar los ODS 20 acciones interconectadas para guiar a los encargados de adoptar decisiones de la Organización de las Naciones Unidas para la Alimentación y la Agricultura” [online]. Italia, Roma, 2018 Disponible en: https://www.fao.org/3/I9900es/i9900es.pdf Visitado en septiembre de 2023.
C.S. Johnston, C.A. Taylor, J.S. Hampl, “More Americans are eating 5 a day but intakes of dark green and cruciferous vegetables remain low”, J. Nutr., 130, 2000, 3063-3067. https://doi.org/10.1093/jn/130.12.3063
S. Massaglia, V.M. Merlino, D. Borra, A. Bargetto, F. Sottile, & C. Peano, “Consumer attitudes and preference exploration towards fresh-cut salads using best-worst scaling and latent class analysis”, Foods, 8 (11), 2019, 568 - 583. https://doi.org/10.3390/foods8110568
C. Spence, “Gastrophysics: Nudging consumers toward eating more leafy (salad) greens”, Food. Qual. Prefer., 80, 2020, 103800. https://doi.org/10.1016/j.foodqual.2019.103800
MGAP – UAM. (2019). Ministerio de Ganadería, Agricultura y Pesca. Unidad Agroalimentaria Metropolitana. Anuario Estadístico Mercado Modelo. Anuario Estadístico 2019. Observatorio Granjero. Disponible en: https://www.uam.com.uy/images/DESARROLLO_COMERCIAL/InformeAnual/Anuario_Estad%C3%ADstico_Mercado_Modelo_2019.pdf
MGAP – UAM. (2022). Ministerio de Ganadería, Agricultura y Pesca. Unidad Agroalimentaria Metropolitana. Anuario Estadístico UAM 2022. Observatorio Granjero. Disponible en: https://www.uam.com.uy/images/DESARROLLO_COMERCIAL/InformeAnual/Anuario_UAM-_2022.pdf
M.R. Morales, J. Janick, A. Whipkey, “Arugula: A Promising Specialty Leaf Vegetable”, AJB, 10, 2002, 14080-14082.
A.S. Siomos, A. Koukounaras, “Quality and postharvest physiology of rocket leaves” Fresh Prod., 1(1), 2007, 59-65. http://ikee.lib.auth.gr/record/257767/files/quality.pdf
J.I. Szwejda-Grzybowska, A. Wrzodak, M. Grzegorzewska, M. Gajewski, R. Kosson, “Influence of tap and hot water treatment before short-term storage on biologically active compounds and sensory quality of wild rocket leaves (Diplotaxis tenuifolia l.)”, J. Hortic. Res., 27(2), 2019, 113-120. https://doi.org/10.2478/johr-2019-0011
I.T. Johnson,. “Glucosinolates: bioavailability and importance to health”, Int. J. Vitam. Nutr. Res., 72(1), 2002, 26-31. https://doi.org/10.1024/0300-9831.72.1.26
S. Manchali, K.N. Chidambara Murthy, B. S. Patil, “Crucial facts about health benefits of popular cruciferous vegetables” JFF, 4, 2012, 94-106. https://doi.org/10.1016/j.jff.2011.08.004
L. Bell, C. Wagstaff, “Rocket science: A review of phytochemical & health-related research in Eruca & Diplotaxis species”, Food Chem.: X, 30(1), 2019, 100002. https://doi.org/10.1016/j.fochx.2018.100002
G.A. Malfa, F. Pappalardo, N. Miceli, M.F. Taviano, S. Ronsisvalle, B. Tomasello, S. Bianchi, F. Davì, V. Spadaro, R. Acquaviva, “Chemical, Antioxidant and Biological Studies of Brassica incana subsp. raimondoi (Brassicaceae) Leaf Extract”, Mol., 28(3), 2023, 1254. https://doi.org/10.3390/molecules28031254
N.T. Barlas, M.E. Irget, M. Tepecik, “Mineral content of the rocket plant (Eruca sativa)”, AJB, 10(64), 2011, 14080-14082. https://doi.org/10.5897/AJB11.2171
M. Cantwell, J. Rovelo, X. Nie, V. Rubatzky, “Specialty salad greens: Postharvest physiology and shelf-life”, Acta Hortic., 467(467), 1988, 371-378. https://doi.org/10.17660/ActaHortic.1998.467.42
P. Kamaranga, J.L. Mallon, K. Stanley, “Respiratory rate and vital heat of some specialty vegetables at various storage temperatures”, HortTechnology, 7, 1997, 46-49.
M.K.D. Hall, J.J. Joblling, G.S. Rogers, “Influence of storage temperature on the seasonal shelf life of perennial wall rocket and annual garden rocket”, Int. J. Veg. Sci., 19, 2013, 83–95.
L.C. Inestroza, V.H. Escalona, “Sanitizantes emergentes: una alternativa en la postcosecha de la rúcula”, Agrocienc. Urug., 19 (1), 2015, 14-123.
D.R. Gutiérrez, A.R. Chaves, S.C. Rodríguez, “UV-C and ozone treatment influences on the antioxidant capacity and antioxidant system of minimally processed rocket (Eruca sativa Mill.)”, Post. Bio. Tech., 138(1), 2018, 107-113. https://doi.org/10.3390/antiox8090356
M.I. Cantwell, M.S. Reid, “Postharvest Physiology and Handling of Fresh Culinary Herbs”, J. Herbs Spices Med. Plants, 1(3), 1993, 93-127. https://doi.org/10.1300/J044v01n03_09
A. Martínez-Sánchez, M.C. Luna, M.V. Selma, J.A. Tudela, J. Abad, M.I. Gil, “Baby-leaf and multi-leaf of green and red lettuces are suitable raw materials for the fresh-cut industry”, Postharvest Biol. Technol., 63, 2012, 1–10.
C.M. Grahn, C. Benedict, T. Thornton, C. Miles, “Production of baby-leaf salad greens in the spring and fall seasons of northwest Washington”, HortScience, 50(10), , 2015, 1467-1471. https://doi.org/10.21273/HORTSCI.50.10.1467
A.L. Waterhouse, “Determination of total phenolics”, Curr. Protoc. Food Anal. Chem., 6, 2002, p. irr. https://doi.org/10.1002/0471142913.fai0101s06
M.B. Arnao, A. Cano, M. Acosta, “The hydrophilic and lipophilic contribution to total antioxidant activity”, Food Chem., 73, 2001, 239- 244. https://doi.org/10.1016/S0308-8146(00)00324-1
W. Brand-Williams, M.E. Cuvelier, C. Berset, “Use of a free radical method to evaluate antioxidant activity”, LWT-Food Sci. Technol., 28(1), 1995, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
I.F.F. Benzie, J.J. Strain, “The ferric reducing ability of plasma FRAP as a measure of “Antioxidant Power”: The FRAP assay”, Anal. Biochem., 239, 1996, 70-76. https://doi.org/10.1006/abio.1996.0292
R.G. McGuire, “Reporting of objective color measurements”, HortScience, 27(12), 1992, 1254-1255.
https://doi.org/10.21273/HORTSCI.27.12.1254
H.K. Lichtenthaler, A.R. Wellburn, “Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents”, Biochem. Soc. Trans., 11(5), 1983, 591-592. http://dx.doi.org/10.1042/bst0110591
A.C. Torales, D.R. Gutiérrez, S.D.C. Rodríguez, “Influence of passive and active modified atmosphere packaging on yellowing and chlorophyll degrading enzymes activity in fresh-cut rocket leaves”, Food Packag. Shelf Life, 26, 2020, 100569.
J.A. Di Rienzo, F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada, C.W. Robledo, InfoStat versión 2016. Universidad Nacional de Córdoba, Argentina. Disponible en: http://www.infostat.com.ar. Visitado en setiembre de 2023
D.R. Gutiérrez, C. Char, E. V. Escalona, A. R. Chaves, S. del C. Rodriguez. “Application of UV-C radiation in the conservation of minimally processed rocket (Eruca sativa Mill.)”. J. Food Process. and Preserv., 2015, 39:3117-3127.
S. Ben-Yehoshua, V. Rodov, “Transpiration and Water Stress,” en Postharvest physiology and pathology of vegetables, J.A. Bartz, J.K. Brecht, Ed Boca Ratón: CRC Press, 2002, 111-159.
J.L. Woods,” Moisture loss from fruits and vegetables”, Postharvest news info 1, 1990, 195-199.
M. Andrade Oliveira, “Qualidade física, química e físico-química de rúcula orgânica em função do período de colheita e armazenamento”, Tesis Maestría en Agronomía: Fitotecnia, Universidad Federal Rural do Semi-Árido, Mossoró, Brasil, 2015.
J.C. Tafolla-Arellano, A. González-León, M.E. Tiznado-Hernández, L. Zacarías García, R. Báez-Sañudo. “Composition, physiology and biosynthesis of plant cuticle”. Rev. Fitotec. Mex, 36, 2013, 3 - 12.
V. Settaluri, K. Al-Mamari, S. Al-Balushi, M. Al-Risi, M. Ali, “Review of Biochemical and Nutritional Constituents in Different Green Leafy Vegetables in Oman”, Food Sci. Nutr., 6, 2015, 765-769. https://doi.org/10.4236/fns.2015.69079
J.M. Monteiro Sigrist, “Estudos Fisiológicos e Tecnológicos de Couve-flor e Rúcula Minimamente Processadas”, Tesis Dr. en Agronomía,Universidad de Sao Paulo. Escuela Superior de Agricultura “Luiz de Queiroz”, São Paulo, Brasil, 2002.
A. Koukounaras, A.S. Siomos, E. Sfakiotakis, “Postharvest CO2 and ethylene production and quality of rocket (Eruca sativa Mill.) leaves as affected by leaf age and storage temperature”, Postharvest Biol. Technol., 46, 2007, 167-173.
A. Koukounaras, A. Siomos, E. Sfakiotakis. “Impact of heat treatment on ethylene production and yellowing of modified atmosphere packaged rocket leaves”. Postharvest Biol. Technol., 2009, 54, 172–176.
P. Nogueira Matos, A. G. Silva de Araújo, G. Almeida Couto, A. Caetano Soares, M. de Carvalho Furtado, Y. B. Soares Menezes, M. A. Gutierrez Carnelossi. “Quality of minimally processed rocket packaged in high density polyethylene and poly nylon packaging”, Res. Soc. Dev., 2021 10 (13)e401101321501.
C. Char, A.C. Silveira, C. Inestroza-Lizardo, A. Hinojosa, A. Machuca, V. H. Escalona. “Effect of noble gas-enriched atmospheres on the overall quality of ready-to-eat arugula salads”, Postharvest Biol. Technol., 2012, 73, 50-55.
A. Tomás-Callejas, M. Boluda, P. Robles, F. Artés, F. Artés-Hernández. “Innovative active modified atmosphere packaging improves overall quality of fresh-cut red chard baby leaves”, LWT-Food Sci. Technol., 2011, 44, 1422-1428.
A. Sumit Kumar, T. Korra, R. Thakur, R. Arutselvan, A. Shankar Kashyap, Y. Nehela, V. Chaplygin, T. Minkina, Ch. Keswani, “Role of plant secondary metabolites in defense and transcriptional regulation in response to biotic stress”, Plant Stress, 2023, 8, 100154.
A. Arias, G. Feijoo, M.T. Moreira. “Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery”, Innovative Food Sci. Emerg. Technol., 2022, 77, 02974.
G. Agati, E. Azzarello, S. Pollastri, M. Tattini. “Flavonoids as antioxidants in plants: Location and functional significance”, Plant. Science, 2012, 196, 67-76.
K. Meitha, Y. Pramesti, S. Suhandono. “Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits”. Int J Food Sci., 2020, 8817778, 11p.
D.R. Guitierrez, L. Lemos, L., S. Rodríguez, “Efecto combinado UV-C y envasado con atmósfera modificada pasiva en la conservación de rúcula (Eruca sativa) cortada IV Gama”, Rev. Iberoam. Post 18, 2017, 145-152.
J. Guiamet, “La senescencia foliar: incógnitas del desmantelamiento celular” [on line]. Disponible en
http://listas.exa.unne.edu.ar/biologia/fisiologia.vegetal/Senescencia%20foliar.pdf. Consultado 19 de septiembre 2023.
M. de la L. Romero Tejeda, M. T. Martínez Damián, J.E. Rodríguez Pérez, M.T. Colinas León, J. Martínez, “Cambios en la calidad poscosecha de salvia (Salvia officinalis) almacenada bajo condiciones de frigoconservación”, Rev. Fac. Cienc. Agrar. 47, 2015, 53-69.
E. M. Gonçalves, R.M.S. Cruz, M. Abreu, T.R.S. Brandão, C.L.M Silva, “Biochemical and colours changes of watercress (Nasturtium officinale R. Br.) during freezing and frozen storage”, J. Food Eng. 93, 2009, 32-39.
A.A. Kader, “Postharvest biology and technology: An overview” En: Postharvest Technology of Horticultural Crops, A.A. Kader, R.F. Kasmire, F.G. Mitchell, M.S. Reid, N.F. Sommer, J.F. Thompson, J.F. Ed: Cooperative Extension University of California, Division of Agriculture and Natural Resources, California, 1985, 39–47. Disponible en:
https://irrec.ifas.ufl.edu/postharvest/HOS_5330/Ch4-2002-Postharvest%20Technology%20of%20Horticultural%20Crops%20-%20Kader.pdf Consultado: 19 de septiembre 2023
E.M. Marcondes Tassi, R.M. Teixeira Duarte, J. Amaya-Farfán, “Partial nutrient characterization of arugula (rocket - Eruca sativa L.) and the effect of heat treatment on its lipoxidase activity”, Braz. J. Food Technol. 21, 2018. https://doi.org/10.1590/1981-6723.02417
D.B. Rodríguez-Amaya, “Carotenoids and Food Preparation: The retention on Provitamin A Carotenoids in prepared, Processed and Stored Foods” [on line], Departamento de Ciencias de Alimentos, Facultad de Ingeniería de Alimentos, Universidade Estadual de Campinas, 1997, 93p. Disponible en:
https://web.archive.org/web/20180516041835id_/https://pdf.usaid.gov/pdf_docs/Pnacb907.pdf
A.J. Meléndez-Martínez, I.M. Vicario, F.J. Heredia, “Estabilidad de los pigmentos carotenoides en los alimentos”, Arch Latinoam Nutr 54, 2004, 209-215.
G.A.F. Hendry, J. D. Houghton, B. Stanley, “The Degradation of Chlorophyll-A Biological Enigma”, New Phytol. 107, 1987, 255-302. https://www.jstor.org/stable/2433054
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ana Valeria Gonzalez, Bruno Pancini, Fernanda Zaccari
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.