Critical literacy in AI
Educational resources for a pedagogy of de-blackboxing
DOI:
https://doi.org/10.24215/24690090e168Keywords:
deblackboxing, Generative AI, hallucination, critical trainingAbstract
This article explores the impact of generative artificial intelligence (AI) in education, with a focus on the educational resources needed for critical training in higher education. It analyses the adoption of generative AI, particularly ChatGPT, by students. The authors argue that while generative AI has the potential to accelerate learning, it also presents risks, such as cognitive distortion of reality in students without critical AI skills due to epistemological dilution of source control and conceptual consistency leading to ‘hallucinations’ and biases. The need for ‘critical AI literacy’ for teachers is proposed, involving technical understanding, critical evaluation, and practical application in teaching the critical and creative aspects of AI in their disciplines. Finally, it is argued that critical AI literacy requires the de-blanboxing of educational resources, both those already available and new resources specially designed for this purpose.
References
Artopoulos, A. y Lliteras, A. (2024). La emergencia de la alfabetización crítica en IA : La reconstrucción social de la ciudadanía en democracias bajo acecho digital. Revista Diálogo Educacional, 24(80). https://doi.org/10.7213/1981-416X.24.083.DS01
Chelli, M., Descamps, J., Lavoué, V., Trojani, C., Azar, M., Deckert, M., Raynier, J.-L., Clowez, G., Boileau, P. y Ruetsch-Chelli, C. (2024). Hallucination Rates and Reference Accuracy of ChatGPT and Bard for Systematic Reviews: Comparative Analysis. Journal of Medical Internet Research, 26, e53164. https://doi.org/10.2196/53164
Denning, P. J. y Tedre, M. (2019). Computational thinking. The MIT Press.
Dussel, I. y Williams, F. (2023). Los Imaginarios sociotécnicos de la política educativa digital en México (2012-2022). Profesorado, Revista de Currículum y Formación del Profesorado, 27(1), 39-60. https://doi.org/10.30827/profesorado.v27i1.26247
Fütterer, T., Fischer, C., Alekseeva, A., Chen, X., Tate, T., Warschauer, M. y Gerjets, P. (2023). ChatGPT in education: Global reactions to AI innovations. Scientific Reports, 13(1), 15310. https://doi.org/10.1038/s41598-023-42227-6
Glasner, J. (11 de junio de 2024). Edtech Funding Has Not Hit Bottom. Crunchbase News. https://news.crunchbase.com/edtech/startup-funding-down-global-us-2024/
Gurukkal, R. (2021). Techno-Pedagogy Needs Mavericks. Higher Education for the Future, 8(1), 7-19. https://doi.org/10.1177/2347631121989478
Heintz, F. (2022). The Computational Thinking and Artificial Intelligence Duality. En S.-C. Kong y H. Abelson (Eds.), Computational Thinking Education in K–12 (pp. 143-152). The MIT Press. https://doi.org/10.7551/mitpress/13375.003.0012
Huffman, P. y Hutson, J. (2024). Enhancing History Education with Google NotebookLM: Case Study of Mary Easton Sibley’s Diary for Multimedia Content and Podcast Creation. ISRG Journal of Arts Humanities & Social Sciences, 2(5), 246-253 https://doi.org/10.5281/ZENODO.13860338
Jandrić, P. y Knox, J. (2022). The postdigital turn: Philosophy, education, research. Policy Futures in Education, 20(7), 780-795. https://doi.org/10.1177/14782103211062713
Latour, B. (2008). Re-ensamblar lo social. Una introducción a la teoría del actor-red. Manantial.
Lliteras, A., Artopoulos, A., Ger, J. y Boza, J. (2024). Alfadatizando 2.0 applied to data visualization at high school level and for digital humanities. Empowering digital citizens [Ponencia]. 19th Latin American Conference on Learning Technologies (LACLO 2024). Universidad de la República. Montevideo, Uruguay.
Lo, C. K., Hew, K. F. y Jong, M. S. (2024). The influence of ChatGPT on student engagement: A systematic review and future research agenda. Computers & Education, 219, 105100. https://doi.org/10.1016/j.compedu.2024.105100
Moretti, F. (2013). Distant reading. Verso.
Schneider, B. (2022). Multilingualism and AI: The regimentation of language in the age of digital capitalism. Signs and Society, 10(3), 362-387.
Silander, P., Riikonen, S., Seitamaa-Hakkarainen, P. y Hakkarainen, K. (2022). Learning Computational Thinking in Phenomena-Based Co-creation Projects: Perspectives from Finland. En S.-C. Kong y H. Abelson (Eds.), Computational Thinking Education in K–12 (pp. 103-120). The MIT Press. https://doi.org/10.7551/mitpress/13375.003.0008
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Alejandro Artopoulos, Alejandra Lliteras

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia, sin que sea necesario pedir permiso previo al editor o al/la autor/a.













