Depth Seismic Imaging: A comparison between poststack wave equation migration and Kirchhoff migration

Authors

  • Lucía Páez Gayone Universidad Nacional de La Plata, Argentina
  • Juan I. Sabbione Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Tomás D'Biassi YPF, Argentina

Keywords:

poststack migration, wave equation, Kirchhoff migration, split-step migration

Abstract

Seismic migration is a key process for obtaining reliable subsurface images in geologically complex areas containing dipping layers, faults, and structural folds. Two of the most commonly used techniques in the industry for migrating seismic data are wave-equation migration and Kirchhoff migration. There is a large number of  ethods and variants for both techniques. In this study, we analyze and compare two depth migration algorithms applied to poststack data sets. The first algorithm is the split-step method, which is based on downward continuation of the wavefield while accounting for lateral velocity variations. The second algorithm is Kirchhoff migration, which, although also derived from the wave equation, focuses on summing observed amplitudes along arrivals defined by diffraction curves. The split-step method is implemented using a self-developed code in Julia, while Kirchhoff migration is implemented through the commercial software EPOS. This study aims to analyze in which scenarios it is more convenient to use one method over the other. For this purpose, three poststack data sets are processed using both methods: (1) a synthetic data set generated from a realistic velocity model that includes folds, areas with significant dips, and a structural fault; (2) a real data set from the Austral Basin acquired in Tierra del Fuego; and (3) a second real data set from the Fold and Thrust Belt in the Huallaga Basin, Peru, characterized by large dips. The results show that, overall, both methods successfully generate reliable images of the seismic sections for the three poststack data sets. However, given the nature and approach of each method, the split-step method reconstructs steeper-dipping layers more sharply. Meanwhile, the Kirchhoff method better addresses edge effects and produces slightly superior results in areas with faults.

Downloads

Download data is not yet available.

References

AspenTech. (2023). Epos. Recuperado el 9 de octubre de 2023 de https://www.aspentech.com/en/products/sse/aspen-epos#

Bancroft, J. C. (2001). Seismic imaging: Post-stack. Recorder, 26(7).

Bjorlykke, K. (2015). Petroleum Geoscience: From Sedimentary Environments to Rock Physics. (2ª ed.). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34132-8

Cerjan, C., Kosloff, D., Kosloff, R. y Reshef, M. (1985). A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50(4), 705–708. http://dx.doi.org/10.1190/1.1441945

Cohen, J. y Stockwell, J. M. (2007). CWP/SU: Seismic Unix Release No. 4.0: An open source software package for seismic research and processing. Center for Wave Phenomena, Colorado School of Mines.

Dobrin, M. B. y Savit, C. H. (1988). Introduction to Geophysical Prospecting. (4ª ed.). McGraw-Hill International Editions.

Gazdag, J. (1978). Wave equation migration with the phase-shift method. Geophysics, 43(7), 1342–1351. https://doi.org/10.1190/1.1440899

Gazdag, J. y Sguazzero, P. (1984). Migration of seismic data by phase shift plus interpolation. Geophysics, 49(2), 124–131. https://doi.org/10.1190/1.1441643

Gray, S. H., Etgen, J., Dellinger, J. y Whitmore, D. (2001). Seismic migration problems and solutions. Geophysics, 66(5), 1622–1640. https://doi.org/10.1190/1.1487107

Hale, D., Stockwell, J., Artley, C. y Holzrichter, M. (1998). Finite-difference modeling (2nd order) for acoustic wave equation with pml absorbing boundary conditions. Recuperado el 26 de noviembre de 2023 de https://sepwww.stanford.edu/oldsep/cliner/files/suhelp/sufdmod2_pml.txt

Hastings, F. D., Schneider, J. B. y Broschat, S. L. (1996). Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. The Journal of the Acoustical Society of America, 100(5), 3061–3069. https://doi.org/10.1121/1.417118

Onajite, E. (2014). Seismic Data Analysis Techniques in Hydrocarbon Exploration. Elsevier.

Paradigm™ 19. (2019). User Guide, Overview of Migrations and Additional Information on Kirchhoff Migrations.

Sabbione, J. I., Stanton, A. y Sacchi, M. D. (2016). SeismicJulia: moving forward. Annual Report SAIG, 17.

Schneider, W. A. (1978). Integral formulation for migration in two and three dimensions. Geophysics, 43(1), 49–76. https://doi.org/10.1190/1.1440828

Signal Analysis and Imaging, Group University of Alberta (2015). Saig velocity model. SAIG: Tools & Data. Recuperado el 9 de octubre de 2023 de https://saigfileserver.physics.ualberta.ca/datasets/testing_datasets/

SLB. (2023). Antialias filter. Recuperado el 9 de octubre de 2023 de https://glossary.slb.com/Terms/a/antialias_filter.aspx

Stanton, A. (2015). Seismain.jl. Recuperado el 7 de septiembre de 2023 de https://seismicjulia.github.io/SeisMain.jl/dev/lib/public/

Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M. y Kessinger, W. P. (1990). Split-step Fourier migration. Geophysics, 55(4), 410–421. https://doi.org/10.1190/1.1442850

Veeken, P. C. y van Moerkerken, B. (2013). Seismic Stratigraphy and Depositional Facies Models. Eage Publications bv.

Yilmaz, Ö. (2001). Seismic Data Analysis. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801580

Downloads

Published

2025-06-17

Issue

Section

Research articles

How to Cite

Páez Gayone, L., Sabbione, J. I., & D'Biassi, T. (2025). Depth Seismic Imaging: A comparison between poststack wave equation migration and Kirchhoff migration. Geoacta, 46(2), 18-36. https://revistas.unlp.edu.ar/geoacta/article/view/18695