Microorganismos fotoautótroficos poco explorados con potencial biotecnológico


  • Lina Rendón Serna CES University. ICIF CES Group, Colombia.
  • Erika Obando CES university professors. ICIF CES Group, Colombia.
  • Tatiana Martínez CES university professors. ICIF CES Group, Colombia.
  • Paola Zapata CES university professors. ICIF CES Group, Colombia.



Palabras clave:

alimentos funcionales, bioactividad, bioeconomía, bioproductos, cosmetología, farmacología


El estudio de los organismos fototróficos es cada vez más frecuente debido a su alto valor nutricional y a su capacidad para producir diversos compuestos bioactivos con potencial uso en la industria alimentaria, farmacéutica, nutracéutica, cosmecéutica y química. Estos compuestos tienen propiedades nutricionales y terapéuticas como neuroprotectoras, antioxidantes, antiinflamatorias, anticoagulantes, hiperlipidémicas, inmunomoduladoras e inmunorreguladoras. Por esta razón, los organismos fototróficos son un suministro esencial para diferentes industrias, ya que pueden satisfacer su demanda comercial actual, al tiempo que reducen el impacto ambiental y promueven el desarrollo bioeconómico del país. Sin embargo, la investigación sobre estos microorganismos es todavía limitada y se centra en un grupo reducido de especies. Esta revisión examina las aplicaciones biotecnológicas de los metabolitos bioactivos producidos por varias especies microbianas fotoautótrofas procedentes de entornos poco explorados y su aplicación industrial. Como resultado, pudimos determinar que existen especies poco exploradas con una gran variedad de compuestos bioactivos. Estos tienen usos potenciales en diversas industrias como la nutracéutica, la cosmecéutica y la energética. Además, se concluyó que la bioindustria representa una oportunidad de negocio y también puede establecerse como una plataforma de modernización y competitividad para diversos sectores económicos del país.


Los datos de descargas todavía no están disponibles.


Cargando métricas ...


Alghazwi, M.; Smid, S.; Karpiniec, S. & W. Zhang (2019). Comparative study on neuroprotective activities of fucoidans from Fucus vesiculosus and Undaria pinnatifida. International Journal of Biological Macromolecules 122: 255-264.

Al-Homaidan, A.A.; Al-Qahtani, H.S.; Al-Ghanayem, A.A.; Ameen, F.; & I.B. Ibraheem (2018). Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi Journal of Biological Sciences 25 (8).

Anand, N.; Thajuddin, N.; & P.K. Dadheech (2019). Chapter 3: Cyanobacterial Taxonomy: Morphometry to Molecular Studies. Cyanobacteria (pp. 43-64). Academic Press.

Andrade, D.S.; Telles, T.S.; & G.H.L. Castro (2020). The Brazilian microalgae production chain and alternatives for its consolidation. Journal of Cleaner Production 250.

Bajpai P. (2020). Chapter 8. Efforts made by different countries toward industrial biotechnology. En P. Bajpai (Ed.), Biotechnology in the Chemical Industry (pp. 203-208).

Balti, R.; Le Balc’h, R.; Brodu, N.; Gilbert, M.; Le Gouic, B.; Le Gall, S.; Sinquin, C. & A, Massé (2018). Concentration and purification of Porphyridium cruentum exopolysaccharides by membrane filtration at various cross-flow velocities. Process Biochemistry 74: 175-184.

Bernaerts, T.M.M.; Gheysen, L.; Foubert, I.; Hendrickx, M.E. & A.M.V, Loey (2019). The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advances, 107419.

Bertsch, P.; Böcker, L.; Mathys, A.; & P, Fischer (2021). Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends in Food Science & Technology 108: 326-342.

Bhattacharya, M.; & S. Goswami (2020). Microalgae: A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology 25, 101580.

Brasil, B.S.A.F.; Silva, F.C.P.; & F.G, Siqueira (2017). Microalgae biorefineries: The Brazilian scenario in perspective. New Biotechnology 39: 90-98.

Brawley, S.H.; Blouin, N.A.; Ficko-Blean, E.; Wheeler, G.L.; Lohr, M.; Goodson, H.V.; Jenkins, J.W.; Blaby-Haas, C.E.; Helliwell, K.E.; Chan, C.X.; Marriage, T.N.; Bhattacharya, D.; Klein, A.S.; Badis, Y.; Brodie, J.; Cao, Y.; Collén, J.; Dittami, S.M.; Gachon, C.M.M.; S.E. Prochnik (2017). Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences 114(31): E6361-E6370.

Burki, F. (2014). The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbor Perspectives in Biology 6(5): a016147.

Burki, F.; Roger, A.J.; Brown, M.W.; & A.G.B, Simpson (2020). The New Tree of Eukaryotes. Trends in Ecology & Evolution 35(1): 43-55.

Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; & M.R, Prinsep (2019). Marine natural products. Natural Product Reports 36(1): 122-173.

Choi, H.; Engene, N.; Smith, J.E.; Preskitt, L.B.; & W.H, Gerwick (2010). Crossbyanols A−D, Toxic Brominated Polyphenyl Ethers from the Hawai’ian Bloom-Forming Cyanobacterium Leptolyngbya crossbyana. Journal of Natural Products 73(4): 517-522.

Derelle, R.; López-García, P.; Timpano, H.; & D, Moreira (2016). A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (Heterokonts). Molecular Biology and Evolution 33(11): 2890-2898.

Di Dato, V.; Di Costanzo, F.; Barbarinaldi, R.; Perna, A.; Ianora, A.; & G, Romano (2019). Unveiling the presence of biosynthetic pathways for bioactive compounds in the Thalassiosira rotula transcriptome. Scientific Reports 9(1): 9893.

Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; & D, Das (2019). Microalgae–nutritious, sustainable aqua- and animal feed source. Journal of Functional Foods 62: 103545.

Dragone, G.; Kerssemakers, A.A.J.; Driessen, J.L.S.P.; Yamakawa, C.K.; Brumano, L.P.; & Mussatto, S.I. (2020). Innovation and strategic orientations for the development of advanced biorefineries. Bioresource Technology 302: 122847.

Efimova, K.V.; Selina, M.S.; & M, Hoppenrath (2019). New morphological data and molecular phylogeny of the benthic dinoflagellate Pseudothecadinium campbellii (Dinophyceae, Gonyaulacales). European Journal of Protistology 71: 125638.

F, Leliaert. (2019). Green Algae: Chlorophyta and Streptophyta. Encyclopedia of Microbiology (Fourth Edition) (pp. 457-468). Academic Press.

Falaise, C.; Cormier, P.; Tremblay, R.; Audet, C.; Deschênes, J.S.; Turcotte, F.; François, C.; Seger, A.; Hallegraeff, G.; Lindquist, N.; Sirjacobs, D.; Gobert, S.; Lejeune, P.; Demoulin, V.; & J.L, Mouge. (2019). Harmful or harmless: Biological effects of marennine on marine organisms. Aquatic Toxicology 209: 13-25.

Fernandes, T.; Martel, A.; & T, Cordeiro (2020). Exploring Pavlova pinguis chemical diversity: A potentially novel source of high value compounds. Scientific Reports 10(1): 339.

Fleurence, J.; & I.A, Levine (2018). Chapter 14: Antiallergic and Allergic Properties. Microalgae in Health and Disease Prevention (pp. 307-315). Academic Press.

Fuentes-Grünewald, C.; Bayliss, C.; Zanain, M.; Pooley, C.; Scolamacchia, M.; & A.Silkina (2015). Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared spectroscopy for monitoring biomass composition and metabolites production. Bioresource Technology 189: 357-363.

Gaignard, C.; Gargouch, N.; Dubessay, P.; Delattre, C.; Pierre, G.; Laroche, C.; Fendri, I.; Abdelkafi, S.; & P, Michaud. (2018a). New horizons in culture and valorization of red microalgae. Biotechnology Advances 37(1): 193-222.

Gaignard, C.; Laroche, C.; Pierre, G.; Dubessay, P.; Delattre, C.; Gardarin, C.; Gourvil, P.; Probert, I.; Dubuffet, A.; & P, Michaud. (2019). Screening of marine microalgae: Investigation of new exopolysaccharide producers. Algal Research 44: 101711.

Gaignard, C.; Macao, V.; Gardarin, C.; Rihouey, C.; Picton, L.; Michaud, P.; & C, Laroche. (2018b). The red microalga Flintiella sanguinaria as a new exopolysaccharide producer. Journal of Applied Phycology 30(5): 2803-2814.

Gantar, M.; Simović, D.; Djilas, S.; Gonzalez, W.W.; & J, Miksovska. (2012). Isolation, characterization and antioxidative activity of C-phycocyanin from Limnothrix sp. Strain 37-2-1. Journal of Biotechnology 159(1): 21-26.

Garner, E.; Davis, B.C.; Milligan, E.; Blair, M.F.; Keenum, I.; Maile-Moskowitz, A.; Pan, J.; Gnegy, M.; Liguori, K.; Gupta, S.; Prussin, I.A.J.; Marr, L.C.; Heath, L.S.; Vikesland, P.J.; Zhang, L.; & A, Pruden. (2021). Next generation sequencing approaches to evaluate water and wastewater quality. Water Research 194.

Goecke, F.; Noda, J.; Paliocha, M.; & H.R, Gislerød, (2020). Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World Journal of Microbiology and Biotechnology 36(10): 1-17.

Hadi, S.I.I.A.; Santana, H.; Brunale, P.P.M.; Gomes, T.G.; Oliveira, M.D.; Matthiensen, A.; Oliveira, M.E.C.; Silva, F.C.P.; & B.S.A.F, Brasil. (2016). DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters. PloS One 11(2): e0149284-e0149284. PubMed.

Haguet, Q.; Bonnet, A.; Bérard, J.B.; Goldberg, J.; Joguet, N.; Fleury, A.; Thiéry, V.; & L, Picot. (2017). Antimelanoma activity of Heterocapsa triquetra pigments. Algal Research 25: 207-215.

Hamidi, M.; Kozani, P.S.; Kozani, P.S.; Pierre, G.; Michaud, P.; & C, Delattre. (2019). Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications. Marine Drugs 18(1).

Heidari, F.; Riahi, H.; Yousefzadi, M.; &M, Asadi. (2012). Antimicrobial Activity of Cyanobacteria Isolated From Hot Spring of Geno. 4. Middle East Journal of Scientific Research 12.336-339.

Hingsamer, M.; & G, Jungmeier. (2019). Chapter Five—Biorefineries.), The Role of Bioenergy in the Bioeconomy (pp. 179-222). Academic Press.

Iwasaki, A.; Ohno, O.; Sumimoto, S.; Ogawa, H.; Nguyen, K.A.; & K, Suenaga. (2015). Jahanyne, an Apoptosis-Inducing Lipopeptide from the Marine Cyanobacterium Lyngbya sp. Organic Letters 17(3): 652-655.

Katiyar, R.; & A, Arora. (2020). Health promoting functional lipids from microalgae pool: A review. Algal Research 46: 101800.

Kavitha, M.D.; Gouda, K.G.M.; Rao, S.J.A.; Shilpa, T.S.; Shetty, N.P.; & R, Sarada. (2019). Atheroprotective effect of novel peptides from Porphyridium purpureum in RAW 264.7 macrophage cell line and its molecular docking study. Biotechnology Letters 41(1): 91-106.

Kellmann, R.; Stüken, A.; Orr, R.J.S.; Svendsen, H.M.; & K.S Jakobsen. (2010). Biosynthesis and Molecular Genetics of Polyketides in Marine Dinoflagellates. Marine Drugs 8(4): 1011-1048.

Khanra, S.; Mondal, M.; Halder, G.; Tiwari, O.N.; Gayen, K.; & T.K, Bhowmick. (2018). Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing 110: 60-84.

Lee, S.; Lim, S.R.; Jeong, D.G.; & J.H, Kim. (2018). Characterization of an Oleaginous Unicellular Green Microalga, Lobosphaera incisa (Reisigl, 1964) Strain K-1, Isolated From a Tidal Flat in the Yellow Sea, Republic of Korea. Frontiers in Microbiology 9.

Li, W.; Su, H.N.; Pu, Y.; Chen, J.; Liu, L.N.; Liu, Q.; & S, Qin. (2019). Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnology Advances 37(2): 340-353.

Liang, Y.; Kaczmarek, M.B.; Kasprzak, A.K.; Tang, J.; Shah, Md.M.R.; Jin, P.; Klepacz-Smółka, A.; Cheng, J.J.; Ledakowicz, S.; & M, Daroch. (2018). Thermosynechococcaceae as a source of thermostable C-phycocyanins: Properties and molecular insights. Algal Research 35: 223-235.

Liang, Y.; Tang, J.; Luo, Y.; Kaczmarek, M.B.; Li, X.; & M, Daroch. (2019). Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresource Technology 278: 255-265.

Liu, Y.; Hu, H.; Wang, Y.; Wang, L.; & Y, Feng. (2020). Effects of heavy metals released from sediment accelerated by artificial sweeteners and humic acid on a green algae Scenedesmus obliquus. Science of The Total Environment 729: 138960.

Lokko, Y.; Heijde, M.; Schebesta, K.; Scholtès, P.; Van Montagu, M.; & M, Giacca. (2018). Biotechnology and the bioeconomy—Towards inclusive and sustainable industrial development. Bioeconomy 40: 5-10.

Lupette, J.; & C, Benning. (2020). Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biodiversity of lipid species – benefit for nutrition and effects on health 178: 15-25.

Maltsev, Y.; Gusev, E.; Maltseva, I.; Kulikovskiy, M.; Namsaraev, Z.; Petrushkina, M.; Filimonova, A.; Sorokin, B.; Golubeva, A.; Butaeva, G.; Khrushchev, A.; Zotko, N.; & D, Kuzmin. (2018). Description of a new species of soil algae, Parietochloris grandis sp. Nov., and study of its fatty acid profiles under different culturing conditions. Algal Research 33: 358-368.

Manirafasha, E.; Ndikubwimana, T.; Zeng, X.; Lu, Y.; &K, Jing. (2016). Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal 109: 282-296.

Minhas, A.; Kaur, B.; & J, Kaur. (2020). Chapter 13.Genomics of algae: Its challenges and applications. Pan-genomics: Applications, Challenges, and Future Prospects (pp. 261-283). Academic Press.

Miyake, M.; Erata, M.; & Y, Asada. (1996). A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate. Journal of Fermentation and Bioengineering 82(5): 512-514.

Mobin, S.M.A.; Chowdhury, H.; & F, Alam. (2019). Commercially important bioproducts from microalgae and their current applications. A review. 2nd International Conference on Energy and Power, ICEP2018, 13–15 December 2018, Sydney, Australia 160: 752-760.

MSCI World Pharmaceuticals, Biotechnology and Life Sciences Index. (2020). 3.

Mylona, K.; Maragkoudakis, P.; Miko, L.; Bock, A.K.; Wollgast, J.; Caldeira, S.; & F, Ulberth. (2018). Viewpoint: Future of food safety and nutrition—Seeking win-wins, coping with trade-offs. Food Policy 74: 143-146.

Najdenski, H.M.; Gigova, L.G.; Iliev, I.I.; Pilarski, P.S.; Lukavský, J.; Tsvetkova, I.V.; Ninova, M.S.; & V.K, Kussovski. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science & Technology 48(7): 1533-1540.

Nayak, R. & P, Waterson. (2019). Global food safety as a complex adaptive system: Key concepts and future prospects. Trends in Food Science & Technology 91; 409-425.

None, T.S.; None, A.M.; & K.S, None. (2020). Identification and Functional Characterization of Two Novel Fatty Acid Genes from Marine Microalgae for Eicosapentaenoic Acid Production. Applied Biochemistry and Biotechnology 190(4).

Patel, A.; Matsakas, L.; Rova, U.; & P, Christakopoulos. (2019). A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresource Technology 278: 424-434.

Petrushkina, M.; Gusev, E.; Sorokin, B.; Zotko, N.; Mamaeva, A.; Filimonova, A.; Kulikovskiy, M.; Maltsev, Y.; Yampolsky, I.; Guglya, E.; Vinokurov, V.; Namsaraev, Z.; & D, Kuzmin. (2017). Fucoxanthin production by heterokont microalgae. Algal Research 24: 387-393.

Prabhudessai, S.S.; & C.U, Rivonker. (2020). Distribution of dinoflagellate cysts along the salinity gradient in two tropical estuaries along the West coast of India. Marine Micropaleontology 156: 101852.

Quintana, J.; Bayona, L.M.; Castellanos, L.; Puyana, M.; Camargo, P.; Aristizábal, F.; Edwards, C.; Tabudravu, J.N.; Jaspars, M.; & F.A, Ramos. (2014). Almiramide D, cytotoxic peptide from the marine cyanobacterium Oscillatoria nigroviridis. Bioorganic & Medicinal Chemistry 22(24): 6789-6795.

Rafika, C.; Rym, B.; Omrane, H.; Khemissa, G.; & H, Ouada. (2018). Antibacterial, antioxidant and cytotoxic activities of extracts from the thermophilic green alga, Cosmarium sp.

Rauf, A.; Khalil, A.A.; Olatunde, A.; Khan, M.; Anwar, S.; Alafnan, A.; & K.R, Rengasamy. (2021). Diversity, molecular mechanisms and structure-activity relationships of marine protease inhibitors—A review. Pharmacological Research 166: 105521.

Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; & N, Rashid. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews 92: 394-404.

Rodrigues, J.; Barcellos, P.; Benevides, N.; Tovar, A.M.; & P, Mourão. (2017). In vitro inhibition of thrombin generation by sulfated polysaccharides from the red seaweed Halymenia sp. Delivery on the Ceará coast, Brazil. Acta of Fisheries and Aquatic Resources 01-11.

Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; Ribot, J.; Rodrigo, M.J.; Zacarias, L.; & C, Zhu. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research 70: 62-93.

Rosemann, A.: & S, Molyneux-Hodgson (2020). Industrial Biotechnology: To What Extent Is Responsible Innovation on the Agenda. Trends in Biotechnology 38(1): 5-7.

Roy, S.; & J.W, Rhim. (2019). Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocolloids 94: 391-398.

Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; & E.F, Abd_Allah. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences 26(4): 709-722.

Savio, S.; Farrotti, S.; Paris, D.; Arnaìz, E.; Díaz, I.; Bolado, S.; Muñoz, R.; Rodolfo, C.; & R, Congestri. (2020). Value-added co-products from biomass of the diatoms Staurosirella pinnata and Phaeodactylum tricornutum. Algal Research 47: 101830.

Serna-Loaiza, S.; Carmona-Garcia, E.; & C.A, Cardona. (2018). Potential raw materials for biorefineries to ensure food security: The Cocoyam case. Industrial Crops and Products 126: 92.

Sherwood, A.R. (2016). Green Algae (Chlorophyta and Streptophyta) in Rivers. River Algae 35-63.

Shishido, T.K.; Humisto, A.; Jokela, J.; Liu, L.; Wahlsten, M.; Tamrakar, A.; Fewer, D.P.; Permi, P.; Andreote, A.P.D.; Fiore, M.F.; & K, Sivonen. (2015). Antifungal Compounds from Cyanobacteria. Marine Drugs 13(4): 2124-2140.

Singh, S.K.; Kaur, R.; Bansal, A.; Kapur, S.; & S, Sundaram. (2020). Chapter 8—Biotechnological exploitation of cyanobacteria and microalgae for bioactive compounds. Biotechnological Production of Bioactive Compounds (pp. 221-259). Elsevier.

Siver P.A. (2015). Chapter 14—Synurophyte Algae: Freshwater Algae of North America (Second Edition) (pp. 607-651). Academic Press.

Soru, S.; Malavasi, V.; Caboni, P.; Concas, A.; & G,Cao. (2019). Behavior of the extremophile green alga SCCA 048 in terms of lipids production and morphology at different pH values. Extremophiles 23(1): 79-89.

Suriya Narayanan, G.; kumar, G.; Seepana, S.; Elankovan, R.; Arumugan, S.; & M, Premalatha. (2018). Isolation, identification and outdoor cultivation of thermophilic freshwater microalgae Coelastrella sp. FI69 in bubble column reactor for the application of biofuel production. Biocatalysis and Agricultural Biotechnology 14: 357-365.

Tang, D.Y.Y.; Khoo, K.S.; Chew, K.W.; Tao, Y.; Ho, S.H.; & P.L, Show. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology 304: 122997.

Tanweer, S.; & B, Panda. (2020). Prospect of Synechocystis sp. PCC 6803 for synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Algal Research 50: 101994.

Thakur, R.; Shiratori, T.; & K, Ishida. (2019). Taxon-rich Multigene Phylogenetic Analyses Resolve the Phylogenetic Relationship Among Deep-branching Stramenopiles. Protist 170(5): 125682.

Torres, P.; Santos, J.P.; Chow, F.; & D.Y.A.C, Dos Santos. (2019). A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Research 37: 288-306.

Torres-Tiji, Y.; Fields, F.J.; & S.P Mayfield. (2020). Microalgae as a future food source. Biotechnology Advances 41: 107536.

Vargas-Hernández, J.G.; Pallagst, K.; & P, Hammer. (2018). Bio-economy at the Crossroads of Sustainable Development. En J. Marques (Ed.), Handbook of Engaged Sustainability (pp. 309-332). Springer International Publishing.

Vijayakumar S. (2015). Pharmaceutical applications of cyanobacteria-A review. Journal of Acute Medicine, 9.

Villanueva-Mejía D.F. (2018). Modern Biotechnology for Agricultural Development in Colombia. Ingeniería y Ciencia, 14(28), 169-194-169-194.

Wan, M.; Wang, Z.Z.; Wang, J.; Li, S.; & Yu,A.; Y, Li. (2016). A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresource Technology 218: 272-278.

Yamakawa, C.K.; Kastell, L.; Mahler, M.R.; Martinez, J.L.; & S.I, Mussatto. (2020). Exploiting new biorefinery models using non-conventional yeasts and their implications for sustainability. Bioresource Technology 309: 123374.

Yim, J.H.; Son, E.; Pyo, S.; & H.K, Lee. (2005). Novel sulfated polysaccharide derived from red-tide microalga Gyrodinium impudicum strain KG03 with immunostimulating activity in vivo. Marine Biotechnology 7(4): 331-338.

Yoon, H.S.; Nelson, W.; Lindstrom, S.C.; Boo, S.M.; Pueschel, C.; Qiu, H.; & D, Bhattacharya. (2017). Rhodophyta. Handbook of the Protists (pp. 89-133). Springer International Publishing.

Zaidi, A.A.; RuiZhe, F.; Malik, A.; Khan, S.Z.; Bhutta, A.J.; Shi, Y.; & K, Mushtaq. (2019). Conjoint effect of microwave irradiation and metal nanoparticles on biogas augmentation from anaerobic digestion of green algae. International Journal of Hydrogen Energy 44(29): 14661-14670.

Zhang, W.; Zhao, Y.; Cui, B.; Wang, H.; & T, Liu. (2016). Evaluation of filamentous green algae as feedstocks for biofuel production. Bioresource Technology 220: 407-413.




Cómo citar

Rendón Serna, L., Obando, E., Martínez, T., & Zapata, P. (2022). Microorganismos fotoautótroficos poco explorados con potencial biotecnológico. Revista De La Facultad De Agronomía, 121(Especial 2), 105. https://doi.org/10.24215/16699513e105



Biotecnologias Aplicadas a cultivos de interés socio economico