Conteúdo Lipídico da Biomassa de Chlorella homosphaera Cultivada de Modo Heterotrófico sob Diferentes Concentrações de Carbono e Nitrogênio

Autores/as

  • Shana Pires Ferreira Universidade Federal do Rio Grande, Brasil
  • Jorge Alberto Vieira Costa Universidade Federal do Rio Grande, Brasil

Palabras clave:

Chlorella homosphaera, aceite de microalgas, glucosa, nitrogeno, alimentado por lote

Resumen

O crescente interesse no estudo do cultivo de microalgas tem sido realizado visando à produção de biomassa tanto para uso na elaboração de alimentos quanto para a obtenção de compostos bioativos e medicinais com alto valor no mercado mundial. Estes são empregados especialmente no desenvolvimento de alimentos funcionais, por suas propriedades nutricionais e farmacêuticas. O objetivo deste estudo foi avaliar o efeito da concentração das fontes de carbono (glicose, C6H12O6) e nitrogênio (NaNO3) no crescimento heterotrófico e na produtividade lipídica da microalga Chlorella homosphaera. O planejamento fatorial completo utilizado foi do tipo 22 com três repetições no ponto central. Os fatores de estudo foram as concentrações de glicose (5, 10 e 15 g.L-1) e de NaNO3 (0,5; 1,0 e 1,5 g.L-1) e as respostas analisadas foram as concentrações de lipídeos totais e de biomassa, totalizando sete experimentos. O cultivo realizado com 5 g.L-1 de glicose e 1,5 g.L-1 de NaNO3 foi o que apresentou maior produção de biomassa (1,22 g.L-1) e maior produtividade lipídica (13,07 mg.L-1.d-1), com predominância dos ácidos graxos palmítico (C16:0 - 23,6 %p/p) e linoléico (C18:1n9 - 22,4 %p/p).

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adarme-Vega, T.C., D.K.Y. Lim, M. Timmins, F. Vernen, Y. Li & P.M. Schenk. 2012. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories: 1-10.

Alyabyev, A.Ju., N.L. Loseva, L.Kh. Gordon, I.N. Andreyeva, G.G. Rachimova, V. I. Tribunskih A.A. Ponomareva & R.B. Kemp. 2007. The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells. Thermochimica Acta 458: 65–70.

Aslan, S. & I.K. Kapdan. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering 28: 64–70.

Borowitzka, M.A & L.J. Borowitzka (EDS.). 1988. Micro-algal biotechnology. Cambridge. New York: Cambridge University Press.

Cataldo, D.A., M. Haroon, L.E. Schrader & Youngs, V.L. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6: 71–80.

Chen, C.-Y., J.-S. Chang, H.-Y. Chang, T.-Y. Chen, J.-H. Wu, & W.-L. Lee. 2013. Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium. Biochemical Engineering Journal 77: 74– 81.

Costa, J.A.V., E.M. Radmann, V.S. Cerqueira, G.C. Santos & M. N. Calheiros. 2006. Perfil de ácidos graxos das microalgas Chlorella vulgaris e Chlorella minutissima cultivadas em diferentes condições. Alimentos e Nutrição Araraquara 17: 429-436.

Folch, J., M. Lees & G.H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226: 497-509.

Heredia-Arroyo, T., W. Wei & B. Hu. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Applied Biochemistry and Biotechnology 162: 1978–1995.

Hsieh, C.H.& W.T. Wu. 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology 100: 3921-3926.

Huang, G., F. Chen, D. Wei, X. Zhang & G. Chen. Biodiesel production by microalgal biotechnology. Applied Energy 87: 38-46.

Isleten-Hosoglu, M., I. Gultepe & M. Elibol. 2012. Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nilered fluorescence based method for quantification of its neutral lipid content. Biochemical Engineering Journal: 11-19.

Krienitz, l., C. Bock, P.K. Dadheech & T. Proschold Taxonomic reassessment of the genus Pires Ferreira & Vieira Costa (2017) Conteúdo lipídico e biomassa de Chlorella homosphaera Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species. Phycologia 50: 89

Lee, J.-Y., C. Yoo, S-Y. Jun, C-Y. Ahn & H.-M. Oh. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology: S75–S77.

Liang, Y., N. Sarkany & Y. Cui. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 31: 1043–1049.

Liu, Z.-Y., G.-C. Wang & B.-C. Zhou. 2008. Effect of iron on growth and lipid accumulation in Chlorella

vulgaris. Bioresource Technology 99: 4717–4722.

Martin-Jezequel, V., M. Hildebrand & M.A. Brzezinski. 2000. Silicon metabolism in diatoms: implications for growth. Journal of Phycology 36: 821

Metcalfe, L.D., A.A. Schimitz & J.R. Pelka. 1966. Rapid preparation of fatty acid esters from lipids for gaschromatography analysis. Analytical Chemistry 38: 514

Morais, M.G. & J.A.V. Costa. 2007. Carbon dioxide fixation by Chlorella kessleri, Chlorella vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnological Letters 29: 1349–1352.

Nelson, D.L & M.M. Cox. 2011. Princípios de Bioquímica de Lehninger. 5ª ed. Editora Artmed S.A. Porto Alegre. 1273p.

O’Grady, J. & J.A. Morgan. 2011. Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess and Biosystems Engineering: 121–125.

Perez-Garcia, O., Y. Bashan & M.E. Puente. 2011. Organic carbon supplementation of municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. Journal of Phycology 47: 190–199.

Richmond, A. 2004. Handbook of Microalgal Culture. Blackwell Science. Rippka, R., J. Deruelles, J.B. Waterbury, M.Herdman & R.Y. Stanier. 1979. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology 111: 1

Shen, Y., W. Yuan, Z. Pei & E. Mao. 2010. Heterotrophic Culture of Chlorella protothecoides in Various Nitrogen Sources for Lipid Production. Applied Biochemistry and Biotechnology 160: 1674–1684.

Song, M., H. Pei, W. Hua & G. Maa. 2013. Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresource Technology 141: 245–251.

Wang, Y., T. Chen & S. Qin. 2012. Heterotrophic cultivation of Chlorella kessleri for fatty acids production by carbon and nitrogen supplements. Biomass and bioenergy 47: 402-409.

Wu, Q.Y., S. Yin, G. Sheng & J. Fu. 1994. New discoveries in study on hydrocarbons from thermal degradation of heterotrophically yellowing algae. Science in China Series B: Chemistry 37: 326–335.

Xu, H., X.L. Miao & Q.Y. Wu. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology 126: 499–507.

Yokochi, T., D. Honda, T. Higashihara & T. Nakahara. Optimization of docosahexaenoic acid production by Schizochytrium limacimum SR21. Applied Microbiology and Biotechnology 49: 72–76.

Publicado

2017-06-30

Cómo citar

Pires Ferreira, S., & Vieira Costa, J. A. (2017). Conteúdo Lipídico da Biomassa de Chlorella homosphaera Cultivada de Modo Heterotrófico sob Diferentes Concentrações de Carbono e Nitrogênio. Revista de la Facultad de Agronomía, 116(1), 19-28. https://revistas.unlp.edu.ar/revagro/article/view/19462