Soil organic carbon

Stratification and spatial variation of different fractions in an Argiudoll under no tillage

Authors

  • María Paz Salazar Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • Rafael Villarreal Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • Luis Alberto Lozano Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • María Florencia Otero Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina
  • Nicolás Guillermo Polich Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina
  • Guido Lautaro Bellora Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina
  • Carlos Germán Soracco Centro de Investigación de Suelos para la Sustentabilidad Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Calles 60 y 119, CC 31. 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

DOI:

https://doi.org/10.24215/16699513e053

Keywords:

particulate organic carbon, humic acids, fulvic acids, humins, stratification

Abstract

Soil organic carbon (SOC) is an important factor for soil quality diagnosis. Physical and chemical fractionation of SOC are useful to characterize SOC, because some fractions are more sensitive indicators of the effects of different management practices. The aims of this study were (i) to determine values of SOC and different fractions of SOC at different depths and positions in an Argiudoll of the Argentinian Pampas under NT, and (ii) to determine the relation between physical and chemical fractions of SOC. In an experimental plot located in Chascomús, we determined SOC content, humic acids (HA), fulvic acids (FA), humins, coarse and fine particulate organic carbon (POCc and POCf) and mineral associated organic carbon (MOC), at different depths and in the row and inter-row. The content of SOC and different SOC fractions, as well as the contribution of each fraction to SOC showed a vertical variation. The contribution of HA and POCc (newer and more labile fractions) to SOC was larger in the surface than in deeper layers, while humins’ (older and more recalcitrant fraction) contribution to SOC increased with depth, and the contribution of FA, POCf and MOC to SOC remained relatively constant. There was no effect of row and inter-row in SOC content and composition. FA content was correlated to POCc, HA content to POCc and POCf and humins to MOC.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Álvarez, C.R., A.O. Costantini; A. Bono, M.A. Taboada, F.H. Gutiérrez Boem, P.L. Fernández & P. Prystupa. 2011. Distribution and vertical stratification of carbon and nitrogen in soil under different managements in the Pampean Region of Argentina. Revista Brasileira de Ciência do Solo 35 (6): 1985-1994.

Benites, V.M., B. Madari & P.L. Machado. 2003. Extração e Fracionamento Quantitativo de Substâncias Húmicas do Solo: um Procedimento Simplificado de Baixo Custo, Comunicado Técnico, Ministério da Agricultura Pecuária e Abastecimiento.

Binet, F., V. Hallaire & P. Curmi. 1997. Agricultural practices and the spatial distribution of earthworms in maize fields. Relationships between earthworm abundance, maize plants and soil compaction. Soil Biology and Biochemistry 29 (3-4): 577-583.

Blanco-Canqui, H. & S.J. Ruis. 2018. No-tillage and soil physical environment. Geoderma 326:164-200.

Bongiovanni, M.D. & J.C. Lobartini. 2006. Particulate organic matter, carbohydrate, humic acid contents in soil macro- and microaggregates as affected by cultivation. Geoderma 136: 660–665.

Briedis, C., J.C.D.M. Sá, R.S. De-Carli, E.A.P. Antunes, L. Simon, M.L. Romko, L.S. Elias & A.D.O. Ferreira. 2012. Particulate soil organic carbon and stratification ratio increases in response to crop residue decomposition under no-till. Revista Brasileira de Ciência do Solo 36 (5): 1483-1490.

Cambardella, C.A. & E.T. Elliott. 1992. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Science Society of America Journal 56: 777-783.

Christensen, B.T. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52: 345-353.

Ding, G., X. Liu, S. Herbert, J. Novak, D. Amarasiriwardena & B. Xing. 2006. Effect of cover crop management on soil organic matter. Geoderma 130 (3-4): 229-239.

Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada & C.W. Robledo. 2008. InfoStat, versión 2008. Grupo Infostat, FCA, Universidad Nacional de Córdoba, Argentina, 268 pp.

Domínguez, A. & J.C. Bedano. 2016. The adoption of no-till instead of reduced tillage does not improve some soil quality parameters in Argentinian Pampas. Applied Soil Ecology 98: 166-176.

Duval, M.E., J.A. Galantini, J.O. Iglesias, S. Canelo, J.M. Martinez & L. Wall. 2013. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil & Tillage Research 131: 11-19.

Duval, M.E., E. De Sa Pereira, J.O. Iglesias & J. Galantini. 2014. Efecto de uso y manejo del suelo sobre las fracciones de carbono orgánico en un Argiudol. Ciencia del Suelo 32 (1): 105-115.

Duval, M.E., J.A. Galantini, J.E. Capurro & J.M. Martínez. 2016. Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions. Soil & Tillage 161: 95-105.

Duval, M.E., J.A. Galantini & F.L. Martínez. 2018. Labile soil organic carbon for assessing soil quality: influence of management practices and edaphic conditions. Catena 171: 316–326.

Franzluebbers, A.J. 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil & Tillage Research 66: 95-106.

Guimarães, D.V., M.I.S. Gonzaga, T.O. da Silva, T.L. da Silva, N. da Silva Días & M.I.S. Matias. 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil & Tillage Research 126: 177-182.

Hadas, A., L. Kautsky, M. Goek & E.E. Kara. 2004. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biology and Biochemistry 36 (2): 255-266.

Haynes, R.J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in agronomy 85: 221-268.

Hernanz, J.L., R. López, L. Navarrete & V. Sánchez-Girón. 2002. Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil & Tillage Research 66: 129–141.

IUSS Working Group WRB. 2015. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, 2015, pp. 192.

Jagadamma, S., J.M. Steinweg, M.A. Mayes, C., Wang & W.M. Post. 2014. Decomposition of added and native organic carbon from physically separated fractions of diverse soils. Biology and Fertility of Soils 50 (4): 613-621.

Kay, B.D. & A.J. VandenBygaart. 2002. Conservation tillage and depth stratification of porosity and soil organic matter. Soil & Tillage Research 66: 107-108.

Mengel, D.B. & S.A. Barber. 1974. Development and Distribution of the Corn Root System Under Field Conditions 1. Agronomy Journal 66 (3): 341-344.

Nelson, D.W. & L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3. Chemical Methods. Soil Sci. Soc. Am. Book Series, Number 5, Madison, WI, pp. 961–1010.

Novelli, L.E., O.P. Caviglia, M.G. Wilson, M.G. & M.C. Sasal. 2013. Land use intensity and cropping sequence effects on aggregate stability and C storage in a Vertisol and a Mollisol. Geoderma 195: 260-267.

Novelli, L.E., O.P. Caviglia & G. Piñeiro. 2017. Increased cropping intensity improves crop residue inputs to the soil and aggregate-associated soil organic carbon stocks. Soil & Tillage Research 165: 128-136.

Olk, D.C., P.R. Bloom, E.M. Perdue, D.M. McKnight, Y. Chen, A. Farenhorst, N. Senesi, Y.P. Chin, P. Schmitt-Kopplin, N. Hertkorn & M. Harir. 2019. Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. Journal of Environmental Quality 48: 217–232.

Orlov, D.S. 1985. Humus acids of soils. New Delhi: Oxonian Press Pvt. Ltd. 378 pp.

Paul, E.A. 2016. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry 98: 109-126.

Pausch, J., B. Zhu, Y. Kuzyakov & W. Cheng. 2013. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biology and Biochemistry: 57: 91-99.

Plaza-Bonilla, D., J. Álvaro-Fuentes & C. Cantero-Martínez. 2014. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil & Tillage Research 139: 19–22.

Rasse, D.P., C. Rumpel & M. Dignac. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil 269: 341-356.

Recio-Vázquez, L., G. Almendros, H. Knicker, P. Carral, P. & A. Álvarez. 2014. Multivariate statistical

assessment of functional relationships between soil physical descriptors and structural features of soil organic matter in Mediterranean ecosystems. Geoderma 230: 95-107.

Reicosky, D.C., S.D. Evans, C.A. Cambardella, R.R. Allmaras, A.R., Wilts & D.R. Huggins. 2002. Continuous corn with moldboard tillage: Residue and fertility effects on soil carbon. Journal of Soil and Water Conservation 57 (5): 277-284.

Romaniuk, R., M. Beltrán, L. Brutti, A. Costantini, S. Bacigaluppo, H. Sainz-Rozas & F. Salvagiotti. 2018. Soil organic carbon, macro-and micronutrient changes in soil fractions with different lability in response to crop intensification. Soil & Tillage Research 181: 136-143.

Sasal, M.C., A.E. Hubert Boizard, M.G. Andriulo & J.L. Wilson. 2017. Platy structure development under no-tillage in the northern humid Pampas of Argentina and its impact on runoff. Soil & Tillage Research 173: 33–41.

Schnitzer, M. 1982. Organic matter characterization. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), pp: 581-594.

Soil Survey Staff. 2014. Keys to Soil Taxonomy 10th ed. USDA-Natural Resources Conservation Service, Washington, DC.

Soracco, C.G., L.A. Lozano, R. Villarreal, E. Melani & G.O. Sarli. 2018. Temporal variation of soil physical quality under conventional and no-till systems. Revista Brasileira de Ciência do Solo 42: in press.

Stevenson, F.J. 1994. Humus chemistry: genesis, composition, reactions. John Wiley & Sons.

Swift, R.S. 1996. Chapter 35, Organic Matter Characterization, Soil Science Society of America and American Society of Agronomy. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3. Chemical Methods. Soil Sci. Soc. Am. Book Series, Number 5, Madison, WI, pp. 1011-1070.

Theng, B.K., K.R. Tate & P. Becker‐Heidmann. 1992. Towards establishing the age, location, and identity of the inert soil organic matter of a spodosol. Zeitschrift für Pflanzenernährung und Bodenkunde 155 (3): 181-184.

Walkley, A. & I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37 (1): 29-38.

Yadvinder-Singh, Bijay-Singh & J. Timsina. 2005. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Advances in Agronomy 85: 269-407.

Yang, Z., B.R.M. Singh & B.K. Sitaula. 2004. Fractions of organic carbon in soils under different crop rotations, cover crops and fertilization practices. Nutrient Cycling in Agroecosystems 70: 161–166.

Zalba, P. & A.R. Quiroga. 1999. Fulvic acid carbon as a diagnostic feature for agricultural soil evaluation. Soil Science 164 (1): 57-61.

Downloads

Published

2020-12-07

How to Cite

Salazar , M. P. ., Villarreal , R. ., Lozano, L. A., Otero, M. F. ., Polich, N. G. ., Bellora, G. L. ., & Soracco, C. G. . (2020). Soil organic carbon: Stratification and spatial variation of different fractions in an Argiudoll under no tillage. Journal of the Agronomy College, 119(2), 053. https://doi.org/10.24215/16699513e053

Most read articles by the same author(s)