Possibilities of the use of Trichoderma harzianum in the biocontrol of wilt and bacterial canker of tomato.

Authors

  • Jorgelina Rolleri Centro de Investigaciones de Fitopatología. Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata; Ministerio de Desarrollo Agraria (PBA), Argentina
  • Marina Stocco Centro de Investigaciones de Fitopatología. Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Argentina
  • Paulina Moya Instituto de Ciencias Polares, Ambiente y Recursos Naturales de la Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur
  • Cecilia Mónaco Centro de Investigaciones de Fitopatología. Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Argentina

DOI:

https://doi.org/10.24215/16699513e080

Keywords:

biocontrol, Clavibacter michiganensis subesp. michiganensis, tomato var. “platense”, antagonists, greenhouse crops

Abstract

The objective of this work was to evaluate the possibility of using two strains of Trichoderma harzianum (Th118 and Th5cc) against bacterial wilt and canker symptoms in tomato plants grown under greenhouse conditions. Both strains were applied on the substrate of the tomato seedling in solid (S) and liquid (L) form at sowing. Clavibacter michiganensis subsp. michiganensis was inoculated at the time of budding through a small incision in the main stem between the fifth and sixth leaves. The trail was repeated for two consecutive years. For each treatment, the yield components (number and weight of fruits) and number of affected leaves were evaluated. Although no significant differences were found between treatments during the two years, the Th118 L treatment was the only that presented the least amount of affected leaves and higher average values of fruit weight. According to results obtained, it can be stated that the Trichoderma harzianum Th118 strain applied as irrigation to the seedlings at the time of sowing could be incorporated as a good alternative within an integrated disease management plan in the tomato crops.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abo-Elyousr, K.A.M., H.M.M. Khalil Bagy, M. Hashem, S.A.M. Alamri & Y.S. Mostafa. 2019. Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egyptian Journal of Biological Pest Control 29: 54.7.

Anwar, J. & Z. Iqbal. 2017. Effect of growth conditions on antibacterial activity of Trichoderma harzianum against selected pathogenic bacteria. Sarhad Journal of Agriculture 33: 501-510.

Bailey, B., H. Bae, R. Melnick & J. Crozier. 2011. The endophytic Trichoderma hamatum isolate DIS 219 b enhances seedling growth and delays the onset of drought stress in Theobroma cacao. En: Endophytes of Forest Trees: Biology and Applications. M. Pirttila, C. Frank, M. Pirttila, & C. Frank, Ed, Netherlands: Springer. pp: 157-172.

Baker, R. 1991. Induction of rhizosphere competence in biocontrol fungus Trichoderma spp. In The Rhizosphere and Plant Growth. Keiter D.L. & P. Cregan, eds, Kluwer Academic Publishers, Boston, pp: 221-228.

Bal, U. & S. Altintas. 2006. A positive side effect from Trichoderma harzianum, the biological control agent: Increased yield in vegetable crops. Journal of Environmental Protection and Ecology 7: 383-387.

Brotman, Y., U. Landau, A. Cuadros-Inostroza, T. Tohge, T. Takayuki, A. Fernie & L. Willmitzer. 2013. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens 9: 1-15.

Brunner, K., S. Zeilinger, R. Ciliento, S.L. Woo, M. Lorito, C.P. Kubicek & R. Mach. 2005. Improvement of the fungal biocontrol agent Trichoderma artoviride to enhance both antagonism and induction of plant systemic disease resistance. Applied Environmental Microbiology 71: 3959-3965.

CABI. 2015. Centre for Agricultural Bioscence International. Datasheet: Clavibacter michiganensis subsp. michiganensis (bacterial canker of tomato). Disponible en https://www.cabi.org/isc/datasheet/15338. Ultimo acceso: octubre de 2020.

Chalupowicz, L., I. Barash, M. Reuven, O. Dror, G. Sharabani, K.H. Gartemann & S. Manulis-Sasson. 2016. Differential contribution of Clavibacter michiganensis subsp. michiganensis virulence factors to systemic and local infection in tomato. Molecular Plant Pathology 18: 336–346.

CHFBA. 2005. Censo Horti- Florícola Provincial de Buenos Aires. Ministerio de Asuntos Agrarios de la Provincia de Buenos Aires, Consejo Federal de Inversiones y Secretaria de Agricultura, Ganadería, Pesca y Alimentación de la Nación. Disponible en http://www.estadistica.ec.gba.gov.ar/dpe/Estadistica/chfba/chfba2005.pdf. Ultimo acceso: septiembre de 2021.

Cordo, C., C. Mónaco, C. Segarra, A. Perelló, D. Bayo, A. Mansilla, N. Kripelz & R. Conde. 2007. Trichoderma spp. as elicitors in the defense responses of wheat plants against Septoria tritici. Biocontrol Science and Technology 17: 687-698.

Corvo Dolcet, S. 2005. Zonas de producción del cultivo de tomate en la Argentina. Secretaría de Agricultura, Ganadería, Pesca y Alimentos. pp: 15. Disponible en https://www.seedquest.com/News/releases/2005/pdf/13528.pdf. Ultimo acceso: septiembre de 2021.

Dal Bello, G., M.C. Rollán, G. Lampugnani, C. Abramoff, L. Ronco, S. Larran, M. Stocco & C. Mónaco. 2011. Biological control of leaf grey mould of greenhouse tomatoes caused by Botrytis cinerea. International Journal of Pest Management 57: 177–182.

Davis, M. J., A.G.Jr. Gillaspie, A.K. Vidaver & R. Harris. 1984. Clavibacter: a new genus containing some phytopathogenic Coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov., and Cavibacter xyli subsp. cynodonis subsp. nov., pathogens that cause Ratoon stunting disease of sugarcane and Bermudagras stunting disease. International Journal of Systematic Bacteriology 34: 107-117.

De León, L., F. Silverio, M.M. López & A. Rodriguez. 2011. Clavibacter michiganensis subsp. michiganensis, a seedborne tomato pathogen: healthy seeds are still the goal. Plant Disease 95: 1328-1338.

De Pino, M. 2020. Guía didáctica: Cultivo y manejo del cultivo de tomate fresco. Curso de Horticultura y Floricultura, FCAyF, UNLP. Disponible en https://aulavirtual.agro.unlp.edu.ar/pluginfile.php/47324/mod_folder/content/0/5.%20Guia%20de%20Tomate%202020.pdf?forcedownload=1. Ultimo acceso: Octubre de 2021.

Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada & C.W. Robledo. 2015. InfoStat versión. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

EPPO. 2013. Organisation Européenne et Mediterranéenne pour la Production des Plantes European and Mediterranean Plant Protection Organization. Clavibacter michiganensis subsp. michiganensis. Diagnostics PM 7/42. Bulletin OEPP/EPPO 43:46-67.

EPPO/ CABI. 1998. Map 253. In: Distribution Maps of Quarantine Pests for Europe. Smith IM, McNamara DG, Scott PR & KM Harris Eds, CAB International, Wallingford (GB) 98 pp.

FAOSTAT. 2016. Food Agricultural Organization of the United Nations. http://www.fao.org/faostat/es/#data/QC Último acceso: octubre de 2020.

Galeano, M., F. Mendez, & A. Urbaneja. 2002. Efecto de Trichoderma harzianum Rifai (cepa T-22) sobre cultivos hortícolas. Koppert Biological Systems 286: 1-11.

Garat, J. 2002. Tomate platense en La Plata, Argentina. Biodiversidad 34: 19-21.

García, M. 2011. El Cinturón hortícola platense: Ahogándonos en un mar de plásticos. Un ensayo acerca de la tecnología, el ambiente y la política. THEOMAI Nº23. Primer semestre 2011.

Gleason, M. L., R.D. Gitaitis & M. Ricker. 1993. Recent progress in understanding and controlling bacterial canker of tomato in Eastern North America. Plant Disease 77: 1069-1076.

González, Y.P., Sifontes, J.L.A. & M. Hurtado. 2013. Efecto bioestimulante de dos formulados líquidos de Trichoderma harzianum Rifai A-34 en la producción protegida de tomate el cultivo de tomate protegido. Centro Agrícola 40: 53-56.

Grondona, I., Hermosa R., Tejada M., Gomis M.D., Mateos P.F., Bridge P.D., Monte E. & I. Garcia-Acha. 1997. Physiological and biochemical characterisation of Trichoderma harzianum, as biological control agent against soilborne fungal plant pathogens. Applied and Environmental 63: 3189-3198.

Guerrero, R., C. Mónaco, M. Stocco, J. Rolleri & N. Guerrero. 2017a. Selección de aislamientos de Trichoderma spp. para el control del cáncer bacteriano (Clavibacter michiganensis subsp. michiganensis) del tomate (Lycopersicum esculentum Mill.) Revista Amazónica Ciencia y Tecnología 6: 9-20.

Guerrero, R., Mónaco C., Stocco M., Consolo V., Rolleri J. & N. Guerrero. 2017b. Aplicación de Trichoderma harzianum para el control del cáncer bacteriano (Clavibacter michiganensis subsp. michiganensis) del tomate (Lycopersicum esculentum Mill.) Revista Amazónica Ciencia y Tecnología 6: 230-243.

Harman, G., R. Howell, A. Viterbo, I. Chet & M. Lorito. 2004. Trichoderma species. Opportunistic, avirulent plant symbionts” Nature Reviews. Microbiology 2: 43-56.

Hermosa, R., A. Viterbo, I. Chet & E. Monte. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158: 17-25.

Hoitink, H., L. Madden & A. Dorrance. 2006. Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96: 186-189.

INTA & CMCBA. 2009. Instituto Nacional de Tecnología Agropecuaria y Corporación del Mercado Central de Buenos Aires. 2009. Boletín electrónico de tomate N°18. Disponible en http://www.mercadocentral.gob.ar/boletin/pdf/Tomate18.pdf Último acceso: octubre de 2020.

Jiménez, C., N.S. de Albarracin, G. Altuna & M. Alcano. 2011. Efecto de Trichoderma harzianum (Rifai) sobre el crecimiento de plantas de tomate (Lycopersicon esculentum L.). Revista de la Facultad de Agronomía LUZ 28: 1-10.

Kariuki, C.K., E.W. Mutitu & W. M. Muiru. 2020. Effect of Bacillus and Trichoderma species in the management of the bacterial wilt of tomato (Lycopersicum esculentum) in the field. Egyptian Journal of Biological Pest Control 30: 4-8.

Kawaguchi A., K. Tanina & K. Inoue. 2010. Molecular typing and spread of Clavibacter michiganensis subsp. michiganensis in Greenhouses in Japan. Plant Pathology 59:76-83.

Lo, C. & C. Lin. 2002. Screening Strains of Trichoderma spp. for plant growth enhancement in Taiwan. Plant Pathology 11: 215-220.

Lorito, M., S. Woo, G. Harman & E. Monte. 2010. Translational research on Trichoderma from omics to the field. Annual Review of Phytopahology 48: 395-417.

MDA. 2018. Ministerio Desarrollo Agrario de la provincia de Buenos Aires, Dirección de Economía, estadísticas y mercados. Area Teledetección y SIG. Cuantificación de superficie cubierta por invernáculos mediante Sensores Remotos satelitales. Informe preliminar. Disponible en file:///C:/Users/viver/Downloads/RESUMEN%20GENERAL%20INVERNACULOS%20(1).pdf.

Montesinos, E. & E. Bardají. 2008. Synthetic Antimicrobial Peptides as Agricultural Pesticides for Plant‐Disease Control. Chemistry & Biodiversity: 5: 1225-1237.

Moo-Koh, F.A., J. Cristóbal-Alejo, A. Reyes-Ramírez, J.M. Tun Suárez & M. Gamboa-Angulo. 2017. Identificación molecular de aislados de Trichoderma spp. y su actividad promotora en Solanum lycopersicum L. Investigación y Ciencia 25: 5-11.

Nawrocka, J. & U. Malolepsza. 2013. Diversity in plant systemic resistance inducedby Trichoderma. Biological Control 67: 149-156.

Nguyen, M.T. & S.L. Ranamukhaarachchi. 2010. Soil borne-antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology 92: 395–405.

Noshad, A., M. Iqbal, L. Folkers, C. Hetherington, A. Aamir Khan, M. Numan & S. Ullah. 2019. Antibacterial Effect of Silver Nanoparticles (AgNPs) Synthesized from Trichoderma harzianum against Clavibacter michiganensis. Journal of Nano Research 58: 10-19.

Otero, J., J.J. Garat, J. Vera Bahima, A. Ahumada, M.P. May & A. Nico. 2014. Multiplicación, Estudio y Difusión de variedades hortícolas locales en el Cinturón Verde Platense. XVII Jornadas Nacionales de Extensión Rural y IX del Mercosur. El encuentro en la diversidad. Facultad de Ciencias Agrarias-UNR, Santa Fe. 19 al 21 de noviembre. Disponible en:https://www.researchgate.net/profile/Jeremias-Otero/publication/317617962_MULTIPLICACION_ESTUDIO_Y_DIFUSION_DE_VARIEDADES_HORTICOLAS_LOCALES_EN_EL_CINTURON_VERDE_PLATENSE/links/5943d1ceaca2722db49d0633/MULTIPLICACION-ESTUDIO-Y-DIFUSION-DE-VARIEDADES-HORTICOLAS-LOCALES-EN-EL-CINTURON-VERDE-PLATENSE.pdf. Ultimo acceso: 30 de septiembre 2020.

Pastrik, K.H. & F.A. Rainey. 1999. Identification and differentiation of Clavibacter michiganensis subspecies by polymerase chain reaction based techniques. Journal of Phytopathology 147: 687-693.

Peralta, I. E., S. Knapp & D. Spooner. 2005. New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany 30: 424-434.

Recinos-Cabrera, H.V. 2015. Evaluación de frecuencia de aplicación de Trichoderma harzianum sobre el desarrollo radicular de tomate. Salamá, baja Vera Paz. Tesis de Grado. Universidad Rafael Londívar. Facultad de Ciencias Ambientales y Agrícolas, Guatemala, 55 pp.

Rolleri, J. 2015. Cancro bacteriano del tomate: diagnóstico y prevención de su dispersión en el cultivo. M. Sc. Tesis. Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina, 77 pp.

Samuels, G.J. 2006. Trichoderma: Systematics, the sexual state, and ecology. Phytopathology 96: 195–206.

Schaad, N. W., J.B. Jones & W. Chun. 2001. Laboratory guide for identification of plant pathogenic bacteria. American Phytopathological Society Press, St. Paul, 373 pp.

Shirakawa, T., T. Sasaki & K. Ozaki. 1991. Ecology and control tomato bacterial canker and detection methods of this pathogens. Japan Agricultural Research Quarterly 25: 27-32.

Smith, E. F. 1910. A new tomato disease of economic importance. (Abstr.). Science (N.S.) 31: 794-796.

Stocco, M., A. Mansilla, C. Mónaco, C. Segarra, G. Lampugnani, C. Abramoff, M. Marchetti, N. Kripelz, C. Cordo & V. Consolo. 2015. Native isolates of Trichoderma harzianum inducting resistance to Mycosphaerella graminicola, on wheat plants. Boletín de la Sociedad Argentina de Botánica 50: 291-301.

Stocco, M., C. Mónaco, C. Abramoff, G. Lampugnani, G. Salerno, N. Kripelz, C. Cordo & V. F. Consolo. 2016. Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of Septoria leaf blotch of wheat. World Journal of Microbiology and Biotechnology 32: 2-10.

Stocco, M., G. Lampugnani, S. Zuluaga, C. Abramoff, C. Cordo & C. Mónaco. 2019. Fungicida biológico a base de una cepa del hongo Trichoderma harzianum: su supervivencia en el suelo. Revista de la Facultad de Agronomía 118 : 1-5.

Tancos, M. A., L. Chalupowicz, I. Barash, S. Manulis-Sasson & C. D. Smart. 2013. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes. Applied and Environmental Microbiology 79: 6948-6957.

Tucci, M., M. Ruocco, L. De Masi, M. De Palma & M. Lorito. 2011. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology 12: 341–354.

Utkhede, R. & C. Koch. 2004. Biological treatments to control bacterial canker of greenhouse tomatoes. BioControl 49: 305–313.

Valdes Morales, M. 2016. Bacterias antagonistas para el control biológico de Ralstonia solanacearum (e. f. Smith) en tomate (Solanum lycopersici L.). Tesis para optar al título de Maestría en Ciencias. Coordinación Culiacán del CIAD en Ciencia y Tecnología para productos agrícolas de zonas tropicales y subtropicales. Ciad Repositorio, México, 83 pp.

Vinale, F. K., E.L. Sivasithamparam, R. Ghisalberti, S.L. Marra Woo & M. Lorito. 2008. Trichoderma plant pathogen interactions. Soil Biology and Biochemistry 40: 1-10.

Volksch, B. & R. May. 2001. Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microbial Ecology 41: 132-139.

Wilson, M., H.L. Campbell, P. Ji, J.B. Jones & D. Cuppels. 2002. Biological control of bacterial speck of tomato under field conditions at several locations in North America. Phytopathology 92: 1284-1292.

Yedidia, I., A.K. Srivastva, Y. Kapulnik & I. Chet. 2001. Effects of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil 235: 235-242.

Zahir, I., M. Babouchi, H. Boulanour & M. El Louyti. 2018. Effet des microorganismes isolés á partir des biotipes Marocains sur les phytopatogénes. Revue bibliographique: Revue Agrobiologique 8: 971-983.

Published

2021-12-22

How to Cite

Rolleri, J., Stocco, M., Moya, P., & Mónaco, C. (2021). Possibilities of the use of Trichoderma harzianum in the biocontrol of wilt and bacterial canker of tomato. Journal of the Agronomy College, 120(2), 080. https://doi.org/10.24215/16699513e080

Most read articles by the same author(s)