Identification of glutenin and gliadin alleles in whole wheat flour (Triticum aestivum L.) and its relationship with baking quality

Authors

  • Juan José Calixto Muñoz Universidad Autónoma del Estado de México
  • Carlos Guzmán García Universidad Autónoma del Estado de México
  • Dora Luz Pinzón Martínez Universidad Autónoma del Estado de México
  • Ana Tarín Gutiérrez Ibáñez Universidad Autónoma del Estado de México
  • Sanjaya Rajaram Resource Seeds International (RSI)
  • Alejandra Donají Solís Méndez Universidad Autónoma del Estado de México.
  • María Dolores Mariezcurrena Berasain Universidad Autónoma del Estado de México.

DOI:

https://doi.org/10.24215/16699513e118

Keywords:

Triticum aestivum L, strength and extensibility, alleles

Abstract

Allelic variants of glutenins of high (GAPM), low molecular weight (GBPM) and gliadins influence strength and extensibility in doughs and determine the industrial use of wheat (Triticum aestivum L.). The objective of the study was to identify the glutenin and gliadin alleles and determine their relationship with baking quality in the Cal Blanco F2011, Matchett F2011 and RSM-Norman F2008 varieties harvested in autumn-winter 2014-2016. Each sample (3 kg) was processed in triplicate. Protein fractionation was on vertical gels (20 x 23 cm) by SDS-PAGE. According to Payne and Lawrence (1983) GAPM were identified. GBPM according to Jackson et al. (1996) and Branlard et al. (2003). Probable end use was defined based on similar combinations reported by various authors. For Glu-1; 1; 17+18; 5+10 in Cal Blanco F2011 and Matchett F2011 and 2*; 7+9; 5+10 in RSM-Norman F2008, all related to baking quality (strength and extensibility). For Glu-3; b, g and c in Cal Blanco F2011; d, h and b in Matchett F2011 and c, g and b in RSM-Norman F2008. The f, d and f alleles (Gli-B1 locus) of ω-gliadins for Cal Blanco F2011, Matchett F2011 and RSM-Norman F2008 respectively. The identification of the alleles, the distribution analysis and the comparison in the literature allowed us to classify the varieties: RSM-Norman F2008 moderate-high quality; Matchett F2011 high quality and Cal Blanco F2011 high quality. Therefore varieties with strong gluten are presumed. The Cal Blanco F2011 variety could be used to improve dough.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Battenfield, S.D.; C. Guzmán; R.C. Gaynor; R.P. Singh; R.J. Peña; S. Dreisigacker; A.K. Fritz & A.J. Poland (2016). Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program. The plant genome 9: 12. http://dx.doi.org/10.3835/plantgenome2016.01.0005

Bellil, I.; O. Hamdi & D. Khelifi (2014). Allelic variation in Glu-1 and Glu-3 loci of bread wheat (Triticum aestivum ssp. aestivum L. em. Thell.) germplasm cultivated in algeria. Cereal Research Communication 42: 648-657. http://dx.doi.org/10.1556/CRC.2014.0004

Branlard, G.; M. Dardevet; N. Amiour & G. Igrejas (2003). Allelic diversity of HMW and LMW glutenin subunits and omega gliadins in French bread wheat (Triticum aestivum L.). Genetics Research Crop Evolution 50: 669-679.

Calixto, M.J.J.; D.L.M. Pinzón; J.J. Castillón; S. Rajaram; M. M. Albarrán & A.R.R. Islas. (2021). Calidad panadera de harinas de trigo entero mediante pruebas convencionales y una prueba no convencional. Revista de la Facultad de Agronomía 120(1):1-10.

CANIMOLT, (Cámara Nacional de la Industria Molinera de Trigo). (2014). Reporte Estadístico al 2014, Sinnergia Diseño Ayuntamiento 7-2ª Col. Cd. Adolfo López Mateos, Edo. de México, México, pp: 98-100.

Cassidy, B.; G.J. Dvorak & D.O. Anderson. (1998). The wheat low molecular weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theory Applied Genetic 96: 743–750.

Chaudhary, N.; P. Dangi, & S.B. Khatkar. 2016. Effect of Gliadin Addition on Dough Mixing Properties of Wheat Varieties. International Journal of Innovative Research in Science Engineering and Technology 5: 1942-1947. http://dx.doi.org/10.15680/IJIRSET.2015.0506251

Cornish, G.; B. Bekes; F.H.M. Allen & J.D. Martin. (20019. Flour proteins link to quality traits in an Australian doubled haploid wheat population. Australian Journal Agricultural Research 52: 1339-1348.

Dong, L.; X. Zhang; D. Liu; H. Fan; J. Sun; Z. Zhang; H. Qin; B. Li; S. Hao; Z. Li; D. Wang; A. Zhang & H.Q. Ling. (2010). New insights into the organization, recombination, expression and functional mechanism of low molecular weight glutenin subunit genes in bread wheat. PLoS ONE 5: e13548. http://dx.doi.org/10.1371/journal.pone.0013548

Gao, X.; T.J. Liu; L. Yu; Y. F. Li & X. Li. (2016). Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chemistry 197: 1184-1190. http://dx.doi.org/10.1016/j.foodchem.2015.11.085

Gulia, N. & S.B. Khatkar. (2014). Quantitative and qualitative assessment of wheat gluten proteins and their contribution to instant noodle quality. International Journal of Food Properties 18: 1648-1663. http://dx.doi.org/10.1080/10942912.2013.805765

Gupta, R.B. & W.K. Shepherd. (1990). Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin *1.Variation and genetic control of the subunits in hexaploid wheats. Theory Applied Genetics 80: 65-74.

Ibrahim, A.I. (2013). Gene stacking of high molecular weight glutenin genes in bread wheat using molecular markers. In: ASA CSSA SSSA International Annual Meetings (ed). Fundamental for life: Soil, Crop and Environmental Science. San Antonio, Texas, USA. pp: 25.

Islas, R.A.; F. MacRitchie; S. Gandikota & G. Hou. (2005). Relaciones de la composición proteínica y mediciones reológicas en masa con la calidad panadera de harinas de trigo. Revista Fitotecnia Mexicana 28: 243-251.

Izadi, A.; B. Yazdi; A.A: Shanejata & M. Mohammadi. (2010). Allelic variations in Glu-1 and Glu-3 loci of historical and modern Iranian bread wheat (Triticum aestivum L.) cultivars. Journal Genetics 89: 193-199.

Jackson, E.; A.M. Morel; H.T. Sontag-Strohm; G. Branlard; E.V. Metakovsky & R. Redaelli. (1996). Proposal for combining the classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.). Journal Genetic and Breed 50: 321-336.

Jin, H.; Y. Zhang; G. Li; P. Mu; Z. Fan; X. Xia & Z. He. (2012). Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. Journal of Cereal Science 57: 146-152. http://dx.doi.org/10.1016/j.jcs.2012.10.011

Li, X.; T. Liu; L. Song; H. Zhang; L. Li & X. Gao. (2016). Influence of high-molecular-weight glutenin subunit composition at Glu-A1 and Glu-D1 loci on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chemistry 213: 728-734. http://dx.doi.org/10.1016/j.foodchem.2016.07.043

Liang, X.; S. Zhen; C. Han; C. Wang; X. Li; W. Ma & Y. Yan. (2015). Molecular characterization and marker development for hexaploid wheat-specific HMW glutenin subunit 1By18 gene. Molecular Breed 35: 221. http://dx.doi.org/10.1007/s11032-015-0406-2

Liu, L.; Z.H. He; W.J. Ma; J.J. Liu; X.C. Xia & R.J. Peña. (2009). Allelic variation at the Glu-D3 locus in Chinese bread wheat and effects on dough properties, pan bread and Noodle qualities. Cereal Research Communications 37: 57–64. http://dx.doi.org/10.1016/j.jcs.2009.05.006

Martínez, E.; R. Espitia; H.E. Villaseñor; J.D. Molina; I. Benítez; A. Santacruz & R.J. Peña. (2010). Diferencias reológicas de la masa de trigo en líneas recombinantes II. Relación con combinaciones de los loci Glu-1 y Glu-3. Agrociencia 44:187-195.

Martínez, C.E.; R. Espitia; H.E.M. Villaseñor; R.S.R. Hortelano; M.F.G. Rodríguez & R.J.B. Peña (2014). La calidad industrial de la masa y su relación con diferentes loci de gluteninas en trigo harinero (Triticum aestivum L.). Agrociencia 48: 403-411.

Martínez, C.E.; E.R. Espitia; H.E.M. Villaseñor & R.J.B. Peña (2012). Contribución de los loci Glu-B1, Glu-D1 y Glu-B3 a la calidad de la masa del trigo harinero. Revista Fitotecnia Mexicana 35: 135-142.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. National Academy of Sciences of the United States of America 70: 3321-3323.

Payne, P.I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu. Rev. of Plant Physiology 38:141-153.

Payne, P.I. & O.K. Corfield. (1979). Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta 145: 83-88.

Payne, P.I.; & J.G. Lawrence. (1983). Catalogue of alleles for the complex loci Glu-A1, Glu-B1 and Glu-D1, which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Research Communications 11: 29-35.

Peña, R.J.; H.S. González & F. Cervantes. (2004). Relationship between Glu-D1/GluB-3 allelic combinations and breadmaking quality-related parameters commonly used in wheat breeding. In: Masci, S., and D. Lafiandra (eds). Proceedings of the 8th International Gluten Workshop. Viterbo, Italy. pp: 156-157.

Peña, B.R.J.; R. Trethowan; W.H. Pfeiffer & M.V. Ginkel. (2002). Quality improvement in wheat. Compositional, genetic, and environmental factors. Journal of Crop Production 5: 1–37.

Rasheed, A.; T. Safdar; A. Gul-Kazi; T. Mahmood; Z. Akram & A. Mujeeb-Kazi. (2012). Characterization of HMW-GS and evaluation of their diversity in morphologically elite synthetic hexploid wheats. Breeding Science 62: 365-370. http://dx.doi.org/10.1270/jsbbs.62.365

Shewry, P.R. & N.G. Halford. (2002). Cereal seed storage proteins: structures, properties and role in gran utilization. Journal of Experimental Botany 53: 947-958.

Shewry, P.R.; N.G. Halford & D. Lafiandra. (2003). Genetics of wheat gluten proteins. Advances in Genetics 49: 111-184.

SAGARPA. (2015). 3er Informe de labores 2014-2015, Ed. Grupo Gerzec, S. A. de C. V. México, D. F., pp: 92-124.

Singh, N.K.; K.W. Shepherd & B.G. Cornish. (1991). A simplified SDS PAGE procedure for separating LMW subunits of glutenin. Journal of Cereal Science 14: 203-208.

Tanaka, H.; R. Shimizu & H. Tsujimoto. (2005). Genetical analysis of contribution of low molecular weight glutenin subunits to dough strength in common wheat (Triticum aestivum L.). Euphytica 141: 157–162. http://dx.doi.org/10.1007/s10681-005-6714-6

Wang, X.; R. Appels; X. Zhang; F. Bekes; K. Torok; S. Tomoskozi; D. Diepeveen; M. Wujum & S. Islam. (20169. Protein-transitions in and out of the dough matrix in wheat flour mixing. Food Chemistry 217: 542-551. http://dx.doi.org/10.1016/j.foodchem.2016.08.060

Zhang, X.; D. Liu; J. Zhang; W. Jiang; W. Yang; J. Sun; Y. Tong; D. Cui & A. Zhang. (2013). Novel insights into the composition, variation, organization and expression of the low-molecular-weight-glutenin subunit gene family in common wheat. Journal of Expperimental Botany 64: 2027-2040. http://dx.doi.org/10.1093/jxb/ert070

Published

2023-03-30

How to Cite

Muñoz, J. J. C., Guzmán García, C., Pinzón Martínez, D. L., Gutiérrez Ibáñez, A. T., Rajaram, S. ., Solís Méndez, A. D., & Mariezcurrena Berasain, M. D. (2023). Identification of glutenin and gliadin alleles in whole wheat flour (Triticum aestivum L.) and its relationship with baking quality. Journal of the Agronomy College, 121(2), 118. https://doi.org/10.24215/16699513e118

Most read articles by the same author(s)