The ORAC method and its application in the determination of the antioxidant capacity of fermented beverages

Authors

  • Carlos Zapata Químico Farmacéutico, Facultad de Ciencias y Biotecnología, Universidad CES, Colombia
  • Paola Zapata Química Farmacéutica, Universidad de Antioquia. PhD en Biología con énfasis en biotecnología, docente Facultad de Ciencias y Biotecnología, Universidad CES, Colombia

DOI:

https://doi.org/10.24215/16699513e097

Keywords:

Analytical Methods, Free Radicals, Foods, Biological Activity

Abstract

Presence of reactive oxygen species generates damage and oxidative stress, since production and elimination of these species in the organism presents pathological and aging situations, these species can be controlled by regulatory agents such as low molecular weight antioxidant substances, which leads to generate a protocol of an antioxidant evaluation methodology that is easily reproducible under the conditions of the instrumental analysis laboratory of the CES University. ORAC is a widely used method to analyze the antioxidant capacity of substances, but it is an overly sensitive method, and it has factors that can present alterations if there are not well-stipulated standards generating fluctuations in the reading or providing data that are not valid. Therefore, the method was standardized under the parameters stipulated by the Good Manufacturing Practices (PAF), obtaining satisfactory results in terms of specificity for the analysis of water-soluble antioxidant compounds, robustness of ±10% for the antioxidant analysis of L-Ascorbic Acid, precision and accuracy, more tests will be carried out to obtain optimal linearity results in terms of linearity and proportionality tests.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Amorati, R., & L. Valgimigli (2015). Advantages and limitations of common testing methods for antioxidants. Free Radical Research 49(5): 633–649.

Chacón, V., & M. Alejandra (2015). Validación de un método para valorar potencial antioxidante (orac—Oxigen radical absorbance capacity).

Chaloner-Larsson, G., & R. Anderson (n.d.-a). Primera parte: Procedimientos de operación normalizados y fórmulas maestras. 184.

Chaloner-Larsson, G., & R. Anderson (n.d.-b). Segunda parte: Validación. 158.

Djordjević, V. B. (2004). Free radicals in cell biology. International Review of Cytology 237: 57–89.

Dorta, E., Aspée, A., Pino, E., González, L., Lissi, E., & C. López-Alarcón (2017). Controversial alkoxyl and peroxyl radical scavenging activity of the tryptophan metabolite 3-hydroxy-anthranilic acid. Biomedicine & Pharmacotherapy 90: 332–338.

Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & J.-M. Mérillon (2009). Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry 57(5): 1768–1774.

Fagali, N. S. (2011). Peroxidación de diferentes especies lipídicas: Efecto de antioxidantes [Tesis, Facultad de Ciencias Exactas].

García, Z., E, A., Eirez Izquierdo, M., & M. Izquierdo Expósito (2004). Papel de los radicales libres sobre el ADN: Carcinogénesis y terapia antioxidante. Revista Cubana de Investigaciones Biomédicas 23(1), 51–57.

Kumar, V., Cotran, R. S., & S.L. Robbins (2003). Patología humana. Elsevier España.

Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & R. Fett (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology (Campinas) 25(4), 726–732.

Llesuy, S., Evelson, P., Campos, A. M., & E. Lissi (2001). Methodologies for evaluation of total antioxidant activities in complex mixtures. A critical review. Biological Research, 34(2) 51–73.

Lobo, V., Patil, A., Phatak, A., & N. Chandra (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews 4(8), 118–126.

Ortega, L., Asociación Española de Farmacéuticos de la Industria, & J. Pérez (2001). Validación de métodos analíticos. Asociación Española de Farmacéuticos de la Industria.

Ou, B., Hampsch-Woodill, M., & R.L. Prior (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry 49(10): 4619–4626.

Pacifico, S., Gallicchio, M., Lorenz, P., Potenza, N., Galasso, S., Marciano, S., Fiorentino, A., Stintzing, F. C., & P. Monaco (2013). Apolar Laurus nobilis leaf extracts induce cytotoxicity and apoptosis towards three nervous system cell lines. Food and Chemical Toxicology 62(C): 628–637.

Prior, R. L., Wu, X., & K. Schaich (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry 53(10): 4290–4302.

Rojano, B. A., Gaviria, C. A., & J.A. Sáez (2008). Antioxidant activity determination in a lipidic peroxidation model of butter inhibited by isoespintanol. Vitae 15(2): 212–218.

Rojano, B. A., Zapata Acosta, K. & F.B. Cortes Correa (2012). Capacidad atrapadora de radicales libres de Passiflora mollissima (Kunth) L. H. Bailey (curuba). Revista Cubana de Plantas Medicinales 17(4): 408–419.

Sánchez-Moreno, C. (2002). Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems. Revista de Agaroquimica y Tecnologia de Alimentos 8(3): 121–137.

Serra, J. A., Marschoff, E. R., & R.O. Domínguez (2016). Estrés oxidativo en la enfermedad neurológica. ¿Es causa, consecuencia o induce una forma crónica progresiva? Neurología 31(6): 420–421.

Sheikh, S., Safia, Haque, E., & S.S. Mir (2012). Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions. Journal of Neurodegenerative Diseases 2013, e563481.

USDA ARS. (n.d.) (2010) Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2: Retrieved October 31, 2017

USP-NF (2022) Descripción y Solubilidad Relativa. (n.d.). Retrieved May 29, 2022, from https://online.uspnf.com/uspnf/document/4_GUID-E124FC65-4846-4731-BB90-913D6A16ED31_18_es-ES?source=Search%20Results&highlight=solubilidades

USP-NF 〈1251〉 (2022). Pesada en una Balanza Analítica. (n.d.). Retrieved June 5, 2022, from https://online.uspnf.com/uspnf/document/4_GUID-64BFE248-B65C-4D04-9DDE-EBF471C3BF3B_3_es-ES?source=Search%20Results&highlight=BALANZAS%20ANALITICAS

USP-NF 〈41〉 Balanzas. (n.d.). (2022) Retrieved June 5, 2022, from https://online.uspnf.com/uspnf/document/4_GUID-0778059F-4B53-414F-B496-2195C1D8C7FB_4_es-ES?source=Search%20Results&highlight=BALANZAS%20ANALITICAS

Zapata, S., Piedrahita, A. M., & B. Rojano (2014). Oxygen radical absorbance capacity (ORAC) and phenolic content of fruits and vegetables from Colombia. Perspectivas en nutrición humana 16(1): 25–36.

Published

2022-11-29

How to Cite

Zapata, C., & Zapata, P. (2022). The ORAC method and its application in the determination of the antioxidant capacity of fermented beverages. Journal of the Agronomy College, 121(Especial 2), 097. https://doi.org/10.24215/16699513e097

Issue

Section

Biotecnologias Aplicadas a cultivos de interés socio economico