REACCIONES MULTICOMPONENTE EN LA SÍNTESIS DE PIRROLES A TRAVÉS DE PROCESOS DE BAJO IMPACTO AMBIENTAL

  • Yeniffer Usuriaga Mulato Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Popayán, Departamento de Química, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Campus Tulcán (190003) Popayán
  • Omar Miguel Portilla Zúñiga Universidad Nacional de La Plata http://orcid.org/0000-0003-3740-8424

Resumen

Los pirroles son compuestos heterocíclicos que han ganado gran importancia en los últimos años, debido a sus propiedades biológicas y químicas, que permiten su aplicación en diversas áreas industriales y farmacológicas. Debido a su potencial uso, se han seguido diversas rutas de síntesis para la obtención de estos compuestos, buscando un bajo impacto ambiental y siguiendo las vías  de  la química verde; por lo cual, en esta revisión se estudiarán diversas reacciones multicomponentes (RMC), como una herramienta eficiente para la obtención de pirroles

Citas

[1] A.L Harreus, “Wiley-VCH Verlag GmbH& Co. KGaA: Weinheim” Ullman´sencyclopedia of industrial chemistry; 30, 2000, 615-618.

[2] K.C, “Majumdar, S.K. Chattopadhyay” Pyrrole and Its Derivatives, in Heterocycles in Natural Product Synthesis; K. C. Majumdar and S. K. Chattopadhyay, Eds.; Wiley-VCH VerlagGmbH& Co. KGaA: Weinheim, 2011, 187-220.

[3] C. Teixeira, F. Barbault, J. Rebehmed, K. Liu, L. Xie, H. Lu, S. Jiang, B. Fan, and F. Maurel, “Molecular modelingstudies of N-substituted pyrrole drivatives-Potential HIV-1 gp41 inhibitors”, Bioorg. Med. Chem. 16, 2008, 3039-3048.

[4] V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, and P. Sharma, “Pyrrole: A resourcefulsmallmolecule in key medicinal hetero-aromatics” 5, RSC Adv. , 2015, 15233-15266.

[5] R. P. Wurz, and A. B. Charette, “Doubly Activated Cyclopropanes as Synthetic Precursors for the Preparation of 4-Nitro- and 4-Cyano-dihydropyrroles and Pyrroles” 12, Org. Lett., 2005, 2313-2316.

[6] J.J. Li, “Heterocyclic chemistry in drug discovery”, Jhon Wiley & Sons: New York, 2013.

[7] K. H. Cheon, J. Cho, Y. Kim, and D.S. Chung, “Thin film transistor gas sensorsincorporating high mobilitydiketopyrrolopyrole-basedpolymeric semiconductor doped with graphene oxide”, ACS Appl. Mater. Interfaces 25, 2015, 14004–14010.

[8] T. Yao, C. Wang, J. Wu, Q. Lin, H. Lv, K. Zhang, K. Yu, and B. Yang, “Preparation of rapsberry-like polypirrolecomposites with applications in Catalysis”, J. Colloid Interface Sci. 2, 2009, 573-577.

[9] O. Krim, M. Bouachrine, B. Hammouti, A. Elidirissi, and M. Hamidi, “2,5-Difuryl-N-methylpyrrole as corrosioninhibitor for Steel in 1M HCl”, Portugaliae Electrochimica Acta 26, 2008, 283-289.

[10] M. Ash, and I. Ash, “Synapse information resources” Handbook of preservatives 1, 2004.

[11] H. Wong, C. Ko, W. Lam, N. Zhu, and V. Wing-Wah, “Design and synthesis of new class of photochromicdiarylethene-containingdithieno[3,2-b:2´,3´d]pyrroles and theirswitchableluminescenceproperties”, Chem. Eur. J. 15, 2009, 10005-10009.

[12] K. D. Bhatt, D. J. Vyas, B.A. Makwana, S.M Darjee, and V.K. Jain, “Highly stable water dispersable calyx [4]pyrroleocta-hydrazideprotected gold nanoparticles as colorimetric and fluorometric chemosensors for selectives ignaling of Co(II) ions”, Spectrochim. Acta, Part A 121 ,2014, 94-100.

[13] S.F. Wang, C.L. Guo, K.K. Cui, Y.T. Zhu, J.X. Ding, X.Y. Zou, and Y.H. Li, “Lactidacid as an invaluable Green solvent for ultrasound-assisted scalable synthesis of pyrrole derivatives”, Ultrason. Sonochem. 26, 2015, 81-86.

[14] T. Vivekanand, P. Vinoth, B. Agieshkumar, N. Sampath, A. Sudalai, J.C. Menéndez, and V. Sridharan, “Highly efficient regioselective synthesis of pyrrolesvia a tándem enamineformation – Michael addition- cyclizationsequence under catalyst- and solvent-free conditions”, Green Chem. 17, 2015, 3415-3423.

[15] A. Herath, and N. D. P. Cosford, “One-step continuos flow synthesis of highlysubstituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tet-Butylesters” 12, Org. Lett., 2010, 5182-5185.

[16] J.J. Li, Name Reactions, 4 th Ed.; Springer Berlín Heidelberg: Berlín, 2009.

[17] V. Estévez, M. Villacampa, and J.C. Menéndez, “Multicomponent reactions for the synthesis of pyrroles”, Chem. Soc. Rev. 39, 2010, 4402-4421.

[18] A. Domling, and I. Ugi, “Multicomponent reactions with isocyanides”, Angew. Chem. 39, 2000, 3168-3210.

[19] Z. Wang, “Comprehensive Organic Name Reactions and Reagents” Jhon Wiley & Sons: New York, 2009.

[20] M.W. Roomi, S.F. MacDonald, “The Hantzsch pyrrole synthesis”, Can. J. Chem. 48, 1970, 1689 – 1697.

[21] P. T. Anastas, and J. C. Warner, “Green Chemistry: Theory and Practice”, Oxford University Press: New York, 1998, 30.

[22] A.W. Trautwein, R.D. Sübmuth, and G. Jung, “Hantzsch pyrrole synthesis on solidsupport”, Bioorg. Med. Chem. Lett. 8, 1998, 2381-2384.

[23] A.W. Trautwein, and G. Jung, “Solid-phase synthesis of pyrroles from enaminones and nitroalkenes”, Tetrahedron Lett. 39, 1998, 8263-8266.

[24] G. Jas, and A. Kirschning, “Continuous flotechniques in orgnic synthesis”, Chem. Eur. J. 9, 2003, 5708-5723.

[25] A. Herath, and N.D.P. Cosford, “One-stepcontinuousflo synthesis of highkysustituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butylesters”, Org. Lett. 12, 2010, 5182-5185.

[26] A. Pashkova, and L. Greiner, “Towardssmall-scale continuos Chemical production: Technology gaps and challenges”, Chem. Ing. Tech. 9, 2011, 1337-1342.

[27] V.Estévez, M. Villacampa, and C. Menéndez, “Recent advances in the synthesis of pyrroles by multicomponent reactions”, Chem. Soc. Rev.13, 2014, 4633-4657.

[28] S.N. Murthy, B. Madhav, A.V. Kumar, K.R. Rao, and Y.V.D. Nageswar, “Multicomponent approach towards the synthesis of subtitutedpyrroles under supramolecular catalysis using β-cyclodextrin as a catalyst in water under neutral conditions”, Helv. Chim. Acta 92, 2009, 2118-2124.

[29] T.A. Moss, and T. Nowak, “Synthesis of 2,3-dicarbonylated pyrroles and furansvia the three-component Hantzsch reaction”, Tetrahedron Lett. 53,

[30] 2012, 3056-3060.

[31] B. Eftekhari-Sis, and S. Vahdati-Khajeh, “Ultrasound-assisted Green synthesis of pyrroles and pyridazines in water viathree-component condensation reactions of arylglyoxals”, Curr. Chem. Lett.2, 2013, 85-92.

[32] V. Estévez, M. Villacampa, and J.C. Menéndez, “Three-componentacces to pyrroles promoted by the CAN-Silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis”, Chem. Commun. 49, 2013, 591-593.

[33] V. Estévez, M. Villacampa, and C. Menéndez, “Concise synthesis of atorvastatinelactone under high-speed vibration milling conditions, Org. Chem. Front. 1, 2014, 458-463.

[34] V. Estévez, V. Sridharan, S. Sabaté, M. Villacampa, and J.C. Menéndez, “ Three-component synthesis of pyrrole-related nitrogen heterocycles via a Hantzsch-type process: Comparison between conventional and high-speed vibration milling conditions”, Asian J. Org. Chem., 2016, doi: 10.1002/ajoc.201600061

[35] F. MatloubiMoghaddam, Z. Mirjafary, S. Motamen, and M. JebeliJavan, “Efficient synthesis of highly substituted pyrroles via a multi-componentreaction using ZnO nanoparticles as a nanocatalyst”, Sci. Iran. 22, 2015, 948-953.

[36] I. Yavari, E. Kowsari, “Effcient and green synthesis of tetrasubstituted pyrroles promoted by task-specific basic ionic liquids as catalyst in aqueous media”, Mol. Divers. 4, 2009, 519-528.

[37] M. Sabbaghan, and A. Ghalaei, “Catalyst application of ZnO nanoestructures in solvent free synthesis of polysubstituted pyrroles”, J. Mol. Liq. 193, 2014, 116-122.

[38] L. Nagarapu, R. Mallepalli, L. Yeramanchi, and R. Bantu, “Polyethyleneglycol (PEG-400) as anefficient and recyclable reaction medium for one-pot synthesis of polysubstituted pyrroles under catalyst-free conditions”, Tetrahedron Lett. 52, 2011, 3401-3404.

[39] X. Feng, Q. Wang, W. Lin, G.L. Dou, Z.B. Huang, and D.Q. Shi, “Highly efficient synthesis of polysubstituted pyrroles via four component domino reaction”, Org. Lett. 15, 2013, 2542-2545.
Publicado
2016-09-07
Cómo citar
USURIAGA MULATO, Yeniffer; PORTILLA ZÚÑIGA, Omar Miguel. REACCIONES MULTICOMPONENTE EN LA SÍNTESIS DE PIRROLES A TRAVÉS DE PROCESOS DE BAJO IMPACTO AMBIENTAL. Investigación Joven, [S.l.], v. 3, n. 1, sep. 2016. ISSN 2314-3991. Disponible en: <http://revistas.unlp.edu.ar/InvJov/article/view/2647>. Fecha de acceso: 23 apr. 2017
Sección
Recopilaciones temáticas

Palabras clave

Reacciones Multicomponente; Pirroles; Química Verde; Eficiencia Atómica