Derivados de monatrol a partir de β-cetoésteres lipofílico por la reacción de Biginelli
Palabras clave:
Derivados, monastrol, β-cetoésteres, lipofílicos, Reacción de BiginelliResumen
Las dihidropiridinas DHPMs son compuestos heterocíclicos de gran interés en la industria farmacológica por poseer múltiple actividad biológica en el tratamiento de diferentes enfermedades en especial contra el cáncer. La síntesis clásica se lleva a cabo mediante la reacción de Biginelli, sin embargo, nuevas estrategias se han estudiado modificando los compuestos de partida con el propósito de mejorar su eficiencia y minimizar su impacto ambiental. Una de las alternativas que ha sido poco explorada consiste en la modificación estructural de la molécula del monastrol a través de hibridación molecular o mediante un incremento en la lipofilicidad; en esta revisión corta se abordará algunas de las investigaciones que se han llevado a cabo desde compuestos de cadena larga demostrado que al aumentar la lipofilicidad tienen mayor actividad farmacológica.
Descargas
Citas
N. N. A. Jafar, I. M. A. Mahdi, M. H. Hadwan, and A. A. Alameri, “The antifungal effect of some 4-chloro-6-methoxy-N, N-dimethylpyrimidin-2-amine derivatives containing a heterocyclic compound on the important types of fungi,” J. Young Pharm., vol. 9, no. 4, 2017, 463–467.
H. Mehrabi and M. Baniasad-Dashtabi, “One-pot synthesis of novel heterocyclic chromenopyrimidine-2,5-dione and thioxochromenopyrimidin-5-one derivatives,” J. Chem. Res., vol. 39, no. 5, 2015, 294–295.
H. ur Rashid et al., “Research developments in the syntheses, anti-inflammatory activities and structure-activity relationships of pyrimidines,” RSC Adv., vol. 11, no. 11, 2021, 6060–6098.
A. M. Escobar, G. Blustein, R. Luque, and G. P. Romanelli, “Recent applications of heteropolyacids and related compounds in heterocycle synthesis. Contributions between 2010 and 2020,” Catalysts, vol. 11, no. 2, 2021, 1–36.
K. L. Dhumaskar, S. N. Meena, S. C. Ghadi, and S. G. Tilve, “Graphite catalyzed solvent free synthesis of dihydropyrimidin-2(1H)-ones/ thiones and their antidiabetic activity,” Bioorganic Med. Chem. Lett., vol. 24, no. 13, 2014, 2897–2899.
I. Batool, A. Saeed, I. Z. Qureshi, S. Kalsoom, and A. Razzaq, “Synthesis, molecular docking and biological evaluation of new thiazolopyrimidine carboxylates as potential antidiabetic and antibacterial agents,” Res. Chem. Intermed., vol. 42, no. 2, 2016, pp. 1139–1163.
M. Pasupathi, N. Santhi, and K. Venkatesan, “Synthesis and in vitro antimicrobial studies of thiodihydropyrimidine derivatives,” J. Chinese Chem. Soc., vol. 67, no. 6, 2020, 1113–1119.
I. L. Gonçalves et al., “New pharmacological findings linked to biphenyl DHPMs, kinesin Eg5 ligands: Anticancer and antioxidant effects,” Future Med. Chem., vol. 12, no. 12, 2020, 1137–1154.
Suresh and J. S. Sandhu, “Past, present and future of the Biginelli reaction: A critical perspective,” Arkivoc, vol. 2012, no. 1, 2012, 66–133.
K. M. Bairagi et al., “Chemistry, anti-diabetic activity and structural analysis of substituted dihydropyrimidine analogues,” J. Mol. Struct., vol. 1227, 2021, 129412.
T. B. Shah, A. Gupte, M. R. Patel, V. S. Chaudhari, H. Patel, and V. C. Patel, “Synthesis and in vitro study of biological activity of heterocyclic N-Mannich bases of 3,4-dihydropyrimidine-2(1H)-thiones,” Indian J. Chem. - Sect. B Org. Med. Chem., vol. 49, no. 5, 2010, 578–586.
J. Kim et al., “Discovery of 3,4-dihydropyrimidin-2(1H)-ones with inhibitory activity against HIV-1 replication,” Bioorganic Med. Chem. Lett., vol. 22, no. 5, 2012, 2119–2124.
W. A. Al-Masoudi, N. A. Al-Masoudi, B. Weibert, and R. Winter, “Synthesis, X-ray structure, in vitro HIV and kinesin Eg5 inhibition activities of new arene ruthenium complexes of pyrimidine analogs,” J. Coord. Chem., vol. 70, no. 12, 2017, 2061–2073.
I. Leizerman, R. Avunie-Masala, M. Elkabets, A. Fich, and L. Gheber, “Differential effects of monastrol in two human cell lines,” Cell. Mol. Life Sci., vol. 61, no. 16, 2004, 2060–207.
I. L. Gonçalves et al., “Effect of N-1 arylation of monastrol on kinesin Eg5 inhibition in glioma cell lines,” Medchemcomm, vol. 9, no. 6, 2018, 995–1010.
C. M. Crews and R. Mohan, “Small-molecule inhibitors of the cell cycle,” Curr. Opin. Chem. Biol., vol. 4, no. 1, 2000, 47–53.
F. A. R. Barbosa et al., “Novel pyrimidinic selenourea induces DNA damage, cell cycle arrest, and apoptosis in human breast carcinoma,” Eur. J. Med. Chem., vol. 155, 2018, 503–515.
M. M. de Moraes, T. G. M. Treptow, W. K. O. Teixeira, L. A. Piovesan, M. G. M. D’Oca, and A. P. de S. Votto, “Fatty-monastrol derivatives and its cytotoxic effect against melanoma cell growth,” Bioorg. Chem., vol. 72, 2017, 148–155.
V. Sarli and A. Giannis, “Inhibitors of mitotic kinesins: Next-generation antimitotics,” ChemMedChem, vol. 1, no. 3, 2006, 293–298.
N. Li et al., “Air-stable zirconium (IV)-salophen perfluorooctanesulfonate as a highly efficient and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions,” Appl. Organomet. Chem., vol. 34, no. 3, 2020,1–10.
C. O. Kappe, “Biologically active dihydropyrimidones of the Biginelli-type - A literature survey,” Eur. J. Med. Chem., vol. 35, no. 12, 2000, 1043–1052.
D. S. Bose, R. K. Kumar, and L. Fatima, “A Remarkable Rate Acceleration of the One-Pot Three-Component Cyclocondensation Reaction at Room Temperature: An Expedient Synthesis of Mitotic Kinesin Eg5 Inhibitor Monastrol,” Synlett, no. 2, 2004, 279–282.
J. K. Srivastava, G. G. Pillai, H. R. Bhat, A. Verma, and U. P. Singh, “Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase ,” Sci. Rep., vol. 7, no. 1, 2017, 1–18.
T. Peters, H. Lindenmaier, W. E. Haefeli, and J. Weiss, “Interaction of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein,” Naunyn. Schmiedebergs. Arch. Pharmacol., vol. 372, no. 4, 2006, 291–299.
H. O. Tawfik, M. H. El-Hamamsy, N. A. Sharafeldin, and T. F. El-Moselhy, "Design, synthesis, and bioactivity of dihydropyrimidine derivatives as kinesin spindle protein inhibitors", vol. 27, no. 23, 2019, 115126.
C. K. Khatri, S. M. Potadar, and G. U. Chaturbhuj, “A reactant promoted solvent free synthesis of 3,4-dihydropyrimidin-2(1H)-thione analogues using ammonium thiocyanate,” Tetrahedron Lett., vol. 58, no. 18, 2017, 1778–1780.
Ramos, Luciana M. et al, “Mechanistic Studies on Lewis Acid Catalyzed Biginelli Reactions in Ionic Liquids: Evidence for the Reactive Intermediates and the Role of the Reagents”, J. Org. Chem, 2012, vol. 77, 10184-10193.
H. G. O. Alvim et al., “Ionic liquid effect over the biginelli reaction under homogeneous and heterogeneous catalysis,” ACS Catal., vol. 3, no. 7, 2013, 1420–1430.
H. Y. K. Kaan et al., “Structural basis for inhibition of Eg5 by dihydropyrimidines: Stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol,” J. Med. Chem., vol. 53, no. 15, 2010, 5676–5683.
V. Singh, V. Sapehiyia, V. Srivastava, and S. Kaur, “ZrO2-pillared clay: An efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones,” Catal. Commun., vol. 7, no. 8, 2006, 571–578.
V. N. Pathak, R. Gupta, and B. Varshney, “An efficient, inexpensive ‘Green Chemistry’ route to multicomponent Biginelli condensation catalyzed by CuCl2.2H2O-HCl,” Indian J. Chem. - Sect. B Org. Med. Chem., vol. 47, no. 3, 2008, 434–438.
A. Khan et al., “Dihydropyrimidine based hydrazine dihydrochloride derivatives as potent urease inhibitors,” Bioorg. Chem., vol. 64, 2016, 85–96.
E. González-Hernández, R. Aparicio, M. Garayoa, M. J. Montero, M. Á. Sevilla, and C. Pérez-Melero, “Dihydropyrimidine-2-thiones as Eg5 inhibitors and L-type calcium channel blockers: Potential antitumour dual agents,” Medchemcomm, vol. 10, no. 9, 2019, 1589–1598.
D. L. Da Silva et al., “Free radical scavenging and antiproliferative properties of Biginelli adducts,” Bioorganic Med. Chem., vol. 20, no. 8, 2012, 2645–2650.
L. V. Chopda and P. N. Dave, “Recent Advances in Homogeneous and Heterogeneous Catalyst in Biginelli Reaction from 2015-19: A Concise Review,” ChemistrySelect, vol. 5, no. 19, 2020, 5552–5572.
B. Anjaneyulu and Dharma Rao G.B., “A Mini Review: Biginelli Reaction for the Synthesis of Dihydropyrimidinones,” I Int. J. Eng. Technol. Res., vol. 3, no. 6, 2015, 26–37.
K. Bhavya, M. N. Purohit, and G. V. Pujar, “Chemistry and biological activity of biginelli type dihydropyrimidinones - A brief review,” Indian Drugs, vol. 48, no. 1, 7–18, 2011.
P. Salehi, M. Dabiri, M. A. Zolfigol, P. O. Box, and F. Science, “A green approach to the synthesis of 2 , 3-dihydropyrimidin-2 (1H) -ones by uronium hydrogensulfate under solvent-free conditions 1 . Department of Phytochemistry , Medicinal Plants and Drugs Research 2 . Department of Chemistry , Faculty of Science , ,” vol. 65, no. 5, 2005, 1177–1181.
R. Rezaei, M. K. Mohammadi, and A. Khaledi, “Microwave assisted solvent-free one pot biginelli synthesis of dihydropyrimidinone compounds on melamine-formaldehyde as a solid support,” Asian J. Chem., vol. 25, no. 8, 2013, 4588–4590.
B. Q. Cao, Y. F. Qiu, X. Zhang, Z. H. Zhu, Z. J. Quan, and X. C. Wang, “UV-Light-Irradiated Trifluoromethylation of Diheteroaryl Disulfides with CF3SO2 Na,” European J. Org. Chem., vol. 2019, no. 6, 2019, 1208–1214.
Y. U. Gadkari, N. T. Hatvate, B. S. Takale, and V. N. Telvekar, “Concentrated solar radiation as a renewable heat source for a preparative-scale and solvent-free Biginelli reaction,” New J. Chem., vol. 44, no. 20, 2020, 8167–8170.
D. Shobha, M. A. Chari, A. Mano, S. T. Selvan, K. Mukkanti, and A. Vinu, “Synthesis of 3,4-dihydropyrimidin-2-ones (DHPMs) using mesoporous aluminosilicate (AlKIT-5) catalyst with cage type pore structure,” Tetrahedron, vol. 65, no. 51, 2009, 10608–10611.
A. Rajack, K. Yuvaraju, C. Praveen, and Y. L. N. Murthy, “A facile synthesis of 3,4-dihydropyrimidinones/thiones and novel N-dihydro pyrimidinone-decahydroacridine-1,8-diones catalyzed by cellulose sulfuric acid,” J. Mol. Catal. A Chem., vol. 370, 2013, 197–204.
Z. Liu, R. Ma, D. Cao, and C. Liu, “New Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Catalyzed by Benzotriazolium-Based Ionic Liquids under Solvent-Free Conditions,” Molecules, vol. 21, no. 4, 2016, 1–8.
N. Basirat, “Preparation and application of a novel supported 3-(3-sulfamic acid imidazolium trifluoroacetate)propyl triethoxysilane on magnetic nanoparticles as a new magnetic ionic liquid for the synthesis of triazole quinazolinones and fused pyrimidines,” Res. Chem. Intermed., vol. 46, no. 12, 2020, 5441–5458.
K. Khazenipour, F. Moeinpour, and F. S. Mohseni-Shahri, “Cu(II)-supported graphene quantum dots modified NiFe2O4: A green and efficient catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazoles in water,” J. Chinese Chem. Soc., vol. 68, no. 1, 2021, 121–130.
A. Kumar and R. A. Maurya, “An efficient bakers’ yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones,” Tetrahedron Lett., vol. 48, no. 26, 2007, 4569–4571.
F. S. De Oliveira et al., “Synthesis and antitumoral activity of novel analogues monastrol-fatty acids against glioma cells,” Medchemcomm, vol. 9, no. 8, 20181282–1288.
C. R. L. Hack et al., “N-alkylated sulfamic acid derivatives as organocatalyst in multicomponent synthesis of fatty dihydropyrimidinones,” J. Braz. Chem. Soc., vol. 29, no. 11, 2018, 2342–2349.
M. M. de Moraes, T. G. M. Treptow, W. K. O. Teixeira, L. A. Piovesan, M. G. M. D’Oca, and A. P. de S. Votto, “Fatty-monastrol derivatives and its cytotoxic effect against melanoma cell growth,” Bioorg. Chem., vol. 72, 2017, 148–155.
T. G. M. Treptow et al., “Novel hybrid DHPM-fatty acids: Synthesis and activity against glioma cell growth in vitro,” Eur. J. Med. Chem., vol. 95, 2015, 552–562.
E. Klein, S. DeBonis, B. Thiede, D. A. Skoufias, F. Kozielski, and L. Lebeau, “New chemical tools for investigating human mitotic kinesin Eg5,” Bioorganic Med. Chem., vol. 15, no. 19, 2007, 6474–6488.