Métodos sostenibles para la síntesis de flavonas

  • Gloria Astrid Prieto Suarez Universidad Pedagógica y Tecnológica de Colombia. Av. Central del Norte 39-115. Tunja, Boyacá, Colombia
  • Edna Ximena Aguilera Palacios Universidad Pedagógica y Tecnológica de Colombia. Av. Central del Norte 39-115. Tunja, Boyacá, Colombia
Palabras clave: Flavonas, Cromonas, Síntesis, Métodos sostenibles

Resumen

Las Flavonas tienen diversas propiedades farmacológicas, entre las cuales se pueden mencionar: antioxidantes, anti-proliferativa, anti-tumoral, anti-microbiana, estrogénica, actividades anti-inflamatorias, también se utilizan en tratamientos de cáncer, enfermedades cardiovasculares, trastornos neurodegenerativos, etc. Se ha encontrado que  tienen efectos sobre algunas enzimas. Debido a las diversas actividades biológicas de las Flavonas, su relación  estructura-actividad ha generado interés entre los químicos medicinales, es por ello que la presente revisión da a conocer algunas rutas sintéticas para su obtención empleando métodos limpios, seguros y amigables con el medio ambiente en torno a los principios de la química verde.

Descargas

La descarga de datos todavía no está disponible.

Citas

K. Kowalski, A. Koceva-Chyła, Ł. Szczupak, P. Hikisz, J. Bernasińska, A. Rajnisz, J. Solecka, and B. Therrien, "Ferrocenylvinyl-flavones: Synthesis, structure, anticancer and antibacterial activity studies," J organomet chem, 741, 2013, 153-161.

G. Maiti, R. Karmakar, R. N. Bhattacharya, and U. Kayal, "A novel one pot route to flavones under dual catalysis, an organo-and a Lewis acid catalyst," Tetrahedron lett, 52, 2011, 5610-5612.

D. O. Bennardi, G. P. Romanelli, J. L. Jios, J. C. Autino, G. T. Baronetti, and H. J. Thomas, "Synthesis of substituted flavones and chromones using a Wells-Dawson heteropolyacid as catalyst," Arkivoc, 11, 2008, 123-130.

D. Bennardi, G. Romanelli, J. Autino, L. Pizzio, P. Vázquez, C. Cáceres, and M. Blanco, "Comparative study of the catalytic preparation of flavones using Keggin heteropolyacids under homogeneous, heterogeneous and solvent free conditions," React kinet mech cat, 100, 2010, 165-174,.

P. Vázquez, L. Pizzio, G. Romanelli, J. Autino, C. Cáceres, and M. Blanco, "Mo and W heteropolyacid based catalysts applied to the preparation of flavones and substituted chromones by cyclocondensation of o-hydroxyphenyl aryl 1, 3-propanediones," Appl catal a-gen, 235, 2002, 233-240.

M. E. Pérez, D. M. Ruiz, J. C. Autino, M. N. Blanco, L. R. Pizzio, and G. P. Romanelli, "Mesoporous titania/tungstophosphoric acid composites: suitable synthesis of flavones," J porous mat, 20, 2013, 1433-1440.

Z. Zhou, P. Zhao, W. Huang, and G. Yang, "A Selective Transformation of Flavanones to 3-Bromoflavones and Flavones Under Microwave Irradiation," Adv synth catal, 348, 2006, 63-67.

G. W. Kabalka and A. R. Mereddy, "Microwave-assisted synthesis of functionalized flavones and chromones," Tetrahedron lett, 46, 2005, 6315-6317.

S. R. Sarda, M. Y. Pathan, V. V. Paike, P. R. Pachmase, W. N. Jadhav, and R. P. Pawar, "A facile synthesis of flavones using recyclable ionic liquid under microwave irradiation," Arkivoc, 16, 2006.

M. Lorenz, M. Shahjahan Kabir, and J. M. Cook, "A two step synthesis of BzR/GABAergic active flavones via a Wacker-related oxidation," Tetrahedron lett, 51, 2010, 1095-1098.

K. H. Kim, H. S. Lee, S. H. Kim, and J. N. Kim, "Palladium-catalyzed oxidative arylation of chromones via a double C–H activation: an expedient approach to flavones," Tetrahedron lett, 53, 2012, 2761-2764.

P. D. Lokhande, S. S. Sakate, K. N. Taksande, and B. Navghare, "Dimethylsulfoxide–iodine catalysed deprotection of 2′-allyloxychalcones: synthesis of flavones," Tetrahedron lett, 46, 2005, 1573-1574.

M. M. Naik, S. G. Tilve, and V. P. Kamat, "Pyrrolidine and iodine catalyzed domino aldol-Michael-dehydrogenative synthesis of flavones," Tetrahedron lett, 55, 2014, 3340-3343.

K. V. Sashidhara, M. Kumar, and A. Kumar, "A novel route to synthesis of flavones from salicylaldehyde and acetophenone derivatives," Tetrahedron Letters, 53, 2012, 2355-2359.

C. Taylor and Y. Bolshan, "Metal-free methodology for the preparation of sterically hindered alkynoylphenols and its application to the synthesis of flavones and aurones," Tetrahedron lett, 56, 2015, 4392-4396,.

J.-J. Dong, Q.-S. Li, Z.-P. Liu, S.-F. Wang, M.-Y. Zhao, Y.-H. Yang, X.-M. Wang, and H.-L. Zhu, "Synthesis, biological evaluation and molecular docking studies of flavone and isoflavone derivatives as a novel class of KSP (kinesin spindle protein) inhibitors," Eur j med chem, 70, 2013, 427-433.

A. S. Zambare, J. N. Sangshetti, N. D. Kokare, and D. B. Shinde, "Development of mild and efficient method for synthesis of substituted flavones using oxalic acid catalyst," Chinese chem lett, 20, 2009, 171-174.

Publicado
2016-09-07
Cómo citar
Prieto Suarez, G. A., & Aguilera Palacios, E. X. (2016). Métodos sostenibles para la síntesis de flavonas. Investigación Joven, 3(1). Recuperado a partir de https://revistas.unlp.edu.ar/InvJov/article/view/2763
Sección
Recopilaciones temáticas